Benefit-Cost Analysis: Methodology and Assumptions

Analysis Period

The Benefit-Cost analysis period is 18 years beginning in 2022 through 2040. The majority of the preservation activities will extend the service life of the structure by 15 years after the completion of the project in 2025. More extensive superstructure repairs, such as a deck replacement or the installation of a new concrete culvert, will extend the service life of the structure by 20 years ${ }^{1}$.

Based on the year-built of the bridge structures in the Bridge Project four bridges (24\%) were built between 1960 and 1969; five bridges (29%) were built between 1970 and 1979; seven bridges (41%) were built between 1980 and 1989; one bridge (6%) was built after 1990^{2}. This data indicates that 53% of the bridges built from 1960 to 1979 have already exceeded or are soon to reach the end of their service life of 40 to 50 years 3; the remaining 47% of the bridges will be approaching the end of their service life within the next ten to fifteen years. Refer to the MDOT SHA Structures Asset Management (SAM) on Exhibit 21 for supporting data.

The project preliminary design started in 2018 with the initial asset data analysis, site assessments, determination of repair priorities, development of construction documents, and cost estimates. The preliminary design was carried through 2021 and developed to the 60% Design Phase. Additional funds were allocated in 2022 by Prince George's County DPW\&T to update the preliminary documents with the latest condition rating for the structures and to prepare the design documents for the Bridge Grant Application. The project construction is estimated to be completed in 2025, thus resulting on a 15-year period after the initial project investment is made to realize the whole benefits of the project at the local level, and consequently across the entire community of Prince George's County.

The residual value of the preservation work beyond the analysis period, computed as the expected service life minus the analysis period, will be discounted at its present monetized value for the last year of the analysis period ${ }^{4}$.

Project Value per Year $=$ Total Investment $/$ Years of Service Life .
Residual Value $=$ [Service Life -18$] \times$ Project Value per Year

[^0]
Alternative 1 - No-Build (Baseline)

This alternative includes the minimal cost of operations and maintenance ($O \& M$) for the structure to keep it open for traffic and in a safe condition for the travelling public. O\&M includes activities such as debris removal, snow removal, and minor holding repairs which do not improve the condition rating of the bridge elements.

COSTS:

Alternative 1 - Operating and Maintenance (O\&M)

Based on the 2022 Prince George's County Operating Budget, the DPW\&T operating budget is $\$ 43,351,205$, of which 1% is allocated to roadway and bridge maintenance and $1 / 3$ of that budget or approximately $\$ 144,504$ is dedicated to the maintenance of NBIS bridges. Based on the SAM query on Exhibit 21, the number of bridges with elements in condition 5 or less is 63 , deriving a maintenance cost of $\$ 2,294$ per bridge structure per year. The trend on the Operating Budget was estimated at $+10.9 \%$ mostly due to increase on operating cost of bus services, snow and ice control, fuel cost, and technology. For the O\&M related budget, the trend will be considered equal to 0%.
Refer to Exhibit 21 for supporting data related to the Prince George's County DPW\&T Operating Budget.

The Prince George's County DPW\&T Operating Budget encompasses the following: Human resources, i.e., maintenance personnel, bridge program manager; and other related administrative cost, i.e., pavement and pothole repairs, trip hazard repairs, cleaning of drainage inlets, stabilization of minor erosion associated with the bridge structure, signage installation and repair, object markers, weight limit posting signs, vegetation control at bridge sites, etc.

Alternative 1 - Construction Zone Cost:

Construction zone road user cost is defined as the additional costs borne by motorists and the community at-large as a result of work zone activity. such as the user delay costs, vehicle operating costs (VOC), and emission costs. Additionally, other off-site components such as noise, business and local community impacts could also be a consequence of implementation of construction zones. These off-site impacts are hard to monetize and require in-depth analysis that are often site-specific. Based on FHWA research no generalized method or tool is yet available to determine these off-site impacts $\left(^{5}\right)$.

For the purpose of this BCA analysis, the construction zone cost includes the cost incurred by users travelling on the roadway due to the additional time necessary to traverse the work zone at the lower posted speed; it correlates the upstream and work zone speed differential and length of the work zone under both unrestricted and restricted traffic flow.

[^1]Work Zone Travel Delay Cost = Work Zone Delay Time X $\$ / \mathrm{hr}$ value of personal travel X Number of passenger cars on personal travel

Work Zone Travel Delay Cost = Work Zone Delay Time X $\$ / \mathrm{hr}$ value of business travel X Number of passenger cars on business travel

Work Zone Travel Delay Cost = Work Zone Delay Time X \$/hr value of trucks travel x Number of Trucks

The Value of personal travel, business travel, and truck travel are assumed as follows: ${ }^{6}$
Personal Travel $=\$ 16.20 / \mathrm{hr}$. Vehicle occupancy for all travels $=1.67$.
Business Travel $=\$ 29.40 / \mathrm{hr}$. The distribution of personal $/$ business travel is 88.2% personal, 11.8% business.

Trucks Travel $=\$ 32.00 / \mathrm{hr}$. Vehicle occupancy $=1.00$.
Assumed Work Zone Delay Time = distance traveled /speed reduction.
Speed reduction $=10 \mathrm{mph}($ assumed reduction from 40 mph to 30 mph$)$.
Distance traveled $(\mathrm{mi})=$ Work zone length $=$ Bridge length + Buffer length + Taper Length
Bridge Length and ADT values were obtained from the bridge SI\&A data sheet. Buffer length and Taper Length are based on MDOT SHA Standard Details for maintenance of traffic Detail No. 104.02-02, 104.02-04, 104.02-08, and 104.02-10 for shoulder work, lane shift, and flagging operations on a 2-lane 2-way roadway with prevailing speed less than 40 mph . A conservative value of 1000^{\prime} has been assumed for Buffer length + Taper Length at all bridge sites.

The number of users is obtained by multiplying the number of vehicles x the number of occupants, distributed by personal travel or business travel. For trucks, the number of users is directly obtained from the number of truck (occupancy factor is equal to 1.0). A growth rate of 2% on the ADT was assumed for the forecasting of travel volume beyond the ADT year from the SI\&A. Refer to Alternative 2 - Bridge Preservation Construction Zone Cost for an example computation of Work Zone Travel Delay Cost.

Alternative 1 - Loss of Service

The loss of service is derived as a consequence of having loss of capacity to carry the Maryland Legal Loads. This loss in capacity is due to the deterioration of the main load carrying members to the point of partial failure or complete failure and the inability of the structure to redistribute the loading. The load posting on the structure to restrict the passage of vehicles/trucks exceeding the capacity of the bridge members constitute a direct loss of service for the facility in which the structure is located. Depending on the severity of the deterioration, the load posting and thus the loss of service can range from minor to significant to complete bridge closure. Loss of service is

[^2]directly correlated to loss of connectivity between facility users and services, and negatively impacting the user's perception of safety. Indirectly, the loss of service negatively affects the community's economy by limiting connectivity through freight distribution routes and compounding the community's perception of economic growth. Loss of service could increase the user's travelling time and distance through alternate routes consequently increasing congestion on those detour routes.

By simple inspection, the connectivity provided by the bridges in this Bridge Project is as follows:

1. Bridge No. P-0117, Cherrywood Ln. over I-95/I-495. ADT $=\mathbf{9 , 6 2 0}$ vpd. ADTT $=\mathbf{5 \%}$. Detour length $=2 \mathrm{mi} .{ }^{7}$
Cherrywood Lane is classified as an urban local road and provides direct entrance/exit route for the Greenbelt METRO Station in Greenbelt, MD. This structure also connects the local Route 201 (Kenilworth Avenue) and local Route 193 (Greenbelt Road) to many different businesses, Springhill Elementary school, apartment buildings, Springhill Recreation Center, and Franklin Park at Greenbelt Station. Bridge No. P-0117 spans Cherrywood Lane over I-95/I-495 serving as a link between the developed areas inside and outside of the I-95/I-495 beltway.
2. Bridge No. P-0169, Contee Road over CSX. ADT $=\mathbf{2 2 , 2 0 2}$ vpd. ADTT $=\mathbf{5 \%}$. Detour length $=6 \mathbf{m i}$.
Contee Road connects collector Route 1 Baltimore Avenue with Route 197 Laurel/Bowie Road and provides connectivity to residential areas, supermarket, pharmacy, Lanchdale Park, St. Nicholas Catholic Church, James H. Harrison Elementary School, Maryland National Memorial, and many private businesses. Contee Road crosses the CSX Railroad which divides the area from the north to the south. The nearest railroad crossing to the north or south is approximately 1.0 mile away.
3. Bridge No. P-0185, Metzerott Road Over Paint Branch. ADT $=\mathbf{1 4 , 8 5 0}$ vpd. ADTT $=$ $\mathbf{1 0 \%}$. Detour length $=1 \mathbf{m i}$.
Metzerott Road connects collector Route 1 Baltimore Avenue with Route 193 University Blvd E in College Park, MD. Metzerott Road is considered a bicycle-friendly road with supports bicycle traffic between the dedicated bicycle lanes along University Blvd E and the Anacostia Tributary Trail System/Paint Branch Trail. Metzerott Road provides connectivity between Acredale Community Park, College Park Dog Park, College Park North Campus Office Annex, Christian Community Church, residential areas, and private businesses.
4. Bridge No. P-0190, Sellman Road over Little Paint Branch. ADT $=\mathbf{5 , 8 2 0}$ vpd. ADTT $=$ $\mathbf{1 0 \%}$. Detour length $=\mathbf{2} \mathbf{~ m i}$.
Sellman Road connects Cherry Hill Road to Montgomery Road and Rhode Island Avenue in Beltsville, MD. Sellman Road crosses Little Paint Branch and provides connectivity to the
[^3]Beltsville Community Center, Little Paint Branch Park, park trails, walking trails along Sellman Road, Beltsville Branch Library, and residential areas.
5. Bridges No. P-0198031 \& P-0198041, Cherry Lane over CSX RR. ADT $=\mathbf{1 0 , 8 6 1}$ Eastbound \& 10,860 vpd Westbound. ADTT $=\mathbf{1 0 \%}$. Detour length $=\mathbf{6} \mathbf{~ m i}$. Cherry Lane connects collector Route 1 Baltimore Avenue with Route 197 Laurel/Bowie Road and provides connectivity to residential areas, Cherry Lane Business Park, Self-Storage Facilities, Bear Brach Public Storage, Autumn Lake Healthcare at Cherry Lane, and many private businesses.
6. Bridge No. P-0204 Ritchie Road over Southwest Branch. ADT $=\mathbf{2 2}, 445$ vpd. ADTT $=$ 10%. Detour length $=3 \mathrm{mi}$.
Ritchie Road connects Route 214 Central Avenue on the north to Ritchie Marlboro Road on the south. Ritchie Road provides connectivity to Sacred Ground Praise and Worship Center, Amazon Hub Counter, Public Storage, Prince George's County Materials Recycling, and numerous residential and business areas.
7. Bridge No. P-0205, Walker Mill Road over Southwest Branch. ADT $=\mathbf{3 9}, 421$ vpd. ADTT $=5 \%$. Detour length $=3 \mathrm{mi}$.
Walker Mill Road connects Ritchie Road on the east to Route 458 on the west. Walker Mill Road provides connectivity to Walker Mill Regional Park and trails, Woodland Wonderland Playground, Walker Mill Regional Park Community Garden, and numerous residential and business areas.
8. Bridge No. P-0220 Riverdale Road over Trib. To Northeast Branch. ADT = 5,000 vpd. ADTT $=10 \%$. Detour length $=1 \mathrm{mi}$.
Riverdale Road connects Route 201 Kenilworth Avenue on the east to Taylor Road on the west and flanked by the CSX railroad on the west. Riverdale Road crosses the Northeast Branch of the Anacostia River and the Northeast Branch Trail. Riverdale Road provides connectivity to multiple residential areas, Riverdale Elementary School, Riverdale Garden, Riverdale House Museum, Riverside Community Park and Playground, Tanglewood Park, and many residential and business areas.
9. Bridge No. P-0273, Carter Ave. over Amtrak Railroad. ADT $=\mathbf{1 5}, 218$ vpd. ADTT $=$ 10%. Detour length $=2 \mathrm{mi}$.

Carter Avenue connects Route 450 Annapolis Road on the east to Route 564 Lanham Severn Road on the west. Carter Avenue crosses the Amtrak railroad which divides the area from north to south. Connectivity is provided to numerous private businesses, pharmacy, MARC Metro Seabrook Station and Park and Ride, Seabrook Elementary School, Seabrook Public Bus Services and bicycle access along Route 564, and residential areas.
10. Bridge No. P-0283, Lottsford Road over Western Branch. ADT = 18,846 vpd. ADTT = 10%. Detour length $=2 \mathrm{mi}$.

Lottsford Road connects Route 193 - Enterprise Road on the east to Route 202 - Landover Road on the west. Lottsford Road provides connectivity to grocery stores, Enterprise Park, Enterprise Golf Course, University of Maryland Capital Region Medical Center, and numerous residential and business areas.
11. Bridge No. P-0294, Decatur Street over Northeast Branch. ADT $=8,680$ vpd. ADTT $=$ $\mathbf{2 5 \%}$. Detour length = 1 mile. This bridge is currently posted for $\mathbf{4 8 , 0 0 0} \mathrm{lbs} . / 54,000 \mathrm{lbs}$. single/combination.
Decatur Street connects Route 201 Kenilworth Avenue on the east to US Route 1 Baltimore Avenue on the west. Decatur road is flanked by the CSX railroad on the west. Decatur Road crosses the Northeast Branch of the Anacostia River and the Northeast Branch Trail. Decatur Road provides connectivity to multiple residential areas, Riverdale Elementary School, Riverdale Garden, Riverdale House Museum, Riverside Community Park and Playground, Tanglewood Park, and many residential and business areas.
12. Bridge No. P-0396, Tucker Road over Henson Creek. ADT = 6,842 vpd. ADTT = 5\%. Detour length $=\mathbf{2} \mathbf{~ m i}$.
Tucker Road connects Livingston Road on the north to Palmer Road on the south; connectivity is provided to Henson Valley Christian Church, Tucker Road Community Center, Henson Creek Trail, Tucker Road Athletic Complex, and Ice Rink, Henson Creek Golf Course, Knights of Columbus, Oxon Hill Recreation Club, and numerous residential and business areas.
13. Bridge No. P-0484, McKendree Road over Timothy Branch. ADT $=4,806$ vpd. ADTT $=$ 10%. Detour length $=4 \mathrm{mi}$.
McKendree Road connects US Route 301 on the east to Route 373 on the west. McKendree Road provides connectivity to Aggregate Industries (sand and gravel supplier) and many other private business and residents.
14. Bridge No. P-0490, Gallahan Road over Tinkers Creek. ADT $=3,793$ vpd. ADTT $=$ 10%. Detour length $=4 \mathrm{mi}$.
Gallahan Road connects Piscataway Road on the east to Old Ford Road on the west. Gallahan Road is a bicycle-friendly roadway and provides connectivity to numerous residential areas continuing the bicycle loop onto Route 223 Piscataway Road and Old Ford Road.
15. Bridge No. P-0579, Derrick Place over Butler Branch. ADT $=270$ vpd. ADTT $=\mathbf{2 \%}$. Detour length = $1 \mathbf{m i}$.
Derrick Place connects Hellen Lee Drive on the north to Armor Drive on the south. Derrick Place provides a second point of access to a closed loop residential neighborhood located approximately 0.5 mile west of Brandywine Road.
16. Bridge No. P-0596, Leeland Road over Collington Branch. ADT $=\mathbf{3 , 5 6 8}$ ypd. ADTT $=$ 10%. Detour length $=3 \mathrm{mi}$.

Leeland Road connects US Route 301 on the east to Oak Grove Road and Route 202 on the west. Leeland road provides connectivity to St. Barnabas Episcopal Anglican church, Imagine Foundations at Leeland Public Charter School, and numerous residential and business area.

For this analysis the loss of service is quantified by the Detour Delay Time incurred when trucks traverse the additional detour length to circumvent or bypass a load-posted bridge. The delay time is equal to the detour length divided by the posted speed (40 mph). In the case of passenger vehicles, it is assumed that the bridge will remain open during the analysis period and therefore will not contribute to the travel delay cost.

The load posting of the bridges is assumed to occur beginning in the year 2025, three years into the analysis period and continuing constant each year thereafter.

Travel Delay Cost $=$ Detour Delay Time X $\$ / h r$ value of trucks travel x Number of Trucks

The value of truck travel is assumed as follows: ${ }^{8}$

$$
\text { Trucks }=\$ 32.00 / \mathrm{hr} \text {. Occupancy rate }=1.00 .
$$

The number of users is obtained by directly multiplying the number of trucks (occupancy factor is equal to 1.0). A growth rate of 2% on the ADT was assumed for the forecasting of travel volume beyond the ADT year from the SI\&A.

Example: For Bridge P-0177, the detour length from the SI\&A is 2 mi , the ADT is $9,620 \mathrm{vpd}$ with 5\% tucks.

Detour delay time $=2 \mathrm{mi} / 40 \mathrm{mph}=0.05 \mathrm{hr}$ or 3 minutes.
Travel delay cost $=0.05 \mathrm{hr} \mathrm{X} \mathrm{\$ 32/hr} \mathrm{X} 9620$ vpd X $0.05=\$ 769.60 /$ day. If the detour is implemented 365 days in a year, then the annual cost $=\$ 769.60 /$ day X 365 days $=\$ 280,900 /$ year

For subsequent years after 2022, the ADT value will increase 2% annually.

Alternative 2 - Bridge Preservation

COSTS:

Alternative 2 - Operating and Maintenance (O\&M)

Operating and maintenance expenditures incurred in the period of 2025 through 2040 are forecasted using the expenditure trend from the Alternative -1 Baseline O\&M analysis applied to the remainder of the bridges in the asset inventory with elements in fair or poor condition.

[^4]After the Bridge Project is completed, the Prince George’s County DPW\&T Operating Budget will be utilized to maintain 46 bridge structures with elements still in condition 5 or less in addition to any other asset which would have fallen into condition five or less from 2022 through 2025.

Alternative 2 - Professional Services for Preliminary Design

The BCA estimates the return on the total investment related to the Bridge Project, hence all expenditures incurred from the inception of project must be accounted for.

Professional services cost incurred for the development of the Preliminary Design of the project during 2018-2022 was $\$ 122,684$. Refer to Exhibit 21 for supporting data related to professional services for preliminary design. An inflation factor of 3% was used to discount the cost to the year 2020.

Alternative 2 - Professional Services for Final Design and Construction Services

The total estimated cost for professional services required to develop the project design to construction documents during the period of 2023 through 2025 is $\$ 525,000$. Based on the project schedule, 90% of the cost will be spent in 2023 prior to project advertisement and the remainder 10% cost will be spent in 2024 prior to or at the beginning of the bridge construction. Professional services for final design are forecasted using past experiences with similar projects and the total cost for professional services was assumed evenly spent among all bridges in the Bridge Project.

Construction Services include the review of bid documents, responding to inquiries from bidding contractors, preparing bid price justifications, submittal reviews, and technical consultations during the project construction. The professional services for construction are forecasted using past experiences with similar projects. Refer to Exhibit 21 - BCA Supporting Data and Exhibit 22 - Detailed Cost Estimate for detailed cost for professional services.

Alternative 2 - Construction cost

The estimated total construction cost for the Bridge Project is $\$ 12,264,613$ including $\$ 87,000$ for legal fees and administrative expenses, $\$ 870,000$ for project inspection and management, and 30% contingency. The construction cost is evenly distributed among all structures deriving a cost per bridge of $\$ 721,448$. The project construction cost is distributed 6% during $2023,41 \%$ during 2024, and 53% during 2025. The contingency of 30% accounts for unforeseen and/or unknown changes on the scope or site conditions.

Refer to the Bridge Project budget narrative for details and estimation related to the project construction.

Alternative 2 - Construction Zone Cost:

Construction zone user cost is defined as the additional costs borne by motorists and the community at-large as a result of work zone activity, such as the user delay costs, vehicle operating costs (VOC), crash costs and emission costs. Additionally, other off-site components such as noise, business and local community impacts may also be a consequence related to the implementation of construction zones. These off-site impacts are hard to monetize since the factors that influence their computation are often site-specific. Based on FHWA research no generalized method or tool is yet available to determine these off-site impacts $\left({ }^{9}\right)$.

For the purpose of this BCA analysis, the construction zone cost includes the cost incurred by users travelling on the roadway due to the additional time necessary to traverse the work zone at the lower posted speed. The construction zone cost correlates the upstream and work zone speed differential and length of the work zone under both unrestricted and restricted traffic flow. The Work Zone Travel Delay calculated using the following formulas ${ }^{10}$:

> Work Zone Travel Delay Cost = Work Zone Delay Time X $\$ / h r$ value of personal travel X Number of passenger cars on personal travel

Work Zone Travel Delay Cost = Work Zone Delay Time X \$/hr value of business travel X Number of passenger cars on business travel

> Work Zone Travel Delay Cost = Work Zone Delay Time X \$/hr value of trucks travel x Number of Trucks

The value of personal travel, business travel, and truck travel are assumed as follows ${ }^{10}$:
Personal Travel $=\$ 16.20 / \mathrm{hr}$. Vehicle occupancy all travels $=1.67$.
Business Travel $=\$ 29.40 / \mathrm{hr}$. The distribution of personal $/$ business travel is 88.2% personal, 11.8% business.
Trucks = \$32.00/hr.

Assumed Work Zone Delay Time $=$ distance traveled $/$ speed reduction.
Speed reduction $=10 \mathrm{mph}($ assumed reduction from 40 mph to 30 mph$)$.
Distance traveled $($ mile $)=$ Work zone length $=$ Bridge length + Buffer length + Taper Length
Bridge Length and ADT values were obtained from the bridge SI\&A data sheet. Buffer length and Taper Length are based on MDOT SHA Standard Details for Maintenance of Traffic Details No. 104.02-02, 104.02-04, 104.02-08, and 104.02-10 for shoulder work, lane shift, and flagging operations on a 2-lane 2-way roadway with prevailing speed less than 40 mph . A conservative value of 1000 Feet has been assumed for Buffer length + Taper Length at all bridge sites.

[^5]The number of users is obtained by multiplying the number of vehicles by the number of occupants, distributed by personal travel or business travel respectively. For trucks, the number of users is directly obtained from the number of truck (occupancy factor is equal to 1.0). A growth rate of 2% on the ADT was assumed for the forecasting of travel volume beyond the year 2022.

Example: For Bridge P-0177, the work zone length is equal to 0.2732 mi , the ADT is $9,620 \mathrm{vpd}$ with 5\% tucks.

Work Zone Delay Time $=0.2732 \mathrm{mi} / 10 \mathrm{mph}=0.0273 \mathrm{hr}$ or 1.64 minutes.
Work Zone Travel Delay Cost $=0.0273$ hr X \$16.20/hr X 9620 vpd X 1.67 X 88.2\% = \$6266.70/day for personal trips.

Work Zone Travel Delay Cost = 0.0273 hr X \$29.40/hr X 9620 vpd X 1.67 X 11.8\% = \$1521.50/day for business trips.

Work Zone Travel Delay Cost $=0.0273$ hr X \$32.00/hr X 9620 vpd X 0.05 X $1.0=\$ 420.00 /$ day for trucks trips.

If the construction zone is implemented for a maximum of 1.5 months (42 days) in a year, then the annual cost is: $\$ 6,266.70 /$ day X 42 days $=\$ 263,201 /$ year for personal trips, $\$ 1,521.50 /$ day X 42 days $=\$ 63,900 /$ year for business trips, and $\$ 420.00 /$ day X 42 days $=\$ 17,640 /$ year for trucks.

BENEFITS:

Alternative 2 - Avert bubble expenditure for bridge repair: ${ }^{11}$

Based on the year-built of the bridge structures and as mentioned previously in this analysis, four out of the 17 bridges (24%) were built between 1960 and 1969; five bridges (29%) were built between 1970 and 1979; seven bridges (41%) were built between 1980 and 1989; one bridge (6%) was built after 1990^{12}. This means that 53% of the bridges are already exceeding their service life (older than 40 years) and that in the next ten to fifteen years the remaining 47% of the bridges will be approaching the end of their service life.

The FHWA Bridge Preservation Guide has defined bridge preservation as those actions or strategies that prevent, delay, or reduce deterioration of bridges or bridge elements; restore the function of existing bridges; keep bridges in good or fair condition; and extend their service life ${ }^{13}$.

[^6]The Prince George's County (DPW\&T) 2022 operating budget is $\$ 43,351,205$, of which 1% is allocated to roadway and bridge maintenance with $1 / 3$ ($\$ 144,504 /$ year) dedicated to the maintenance of NBIS bridges with elements in fair or poor condition rating. Operating cost also includes employee salaries, technology, fuel, etc. The SAM inventory currently has 63 NBI bridges with sub-elements in condition 5 or less in Prince George's County.

Similarly, the Prince George's County 2022 Capital Improvement Projects budget is $\$ 5,700,000$ allocated for several county-wide improvement projects including two bridge design projects and one major bridge replacement project. Based on data from the past 10 years, the cost for a major bridge rehabilitation or replacement project in Prince George's County is $\$ 2,000,000$.

If alternative No. 1 "No-Built" is selected, within the next ten to fifteen years, 53% of the bridges will fall into poor condition necessitating major rehabilitation or replacement, while the remaining 47% of the bridges will deteriorate to fair condition. The aggregated expenditure to rehabilitate or replace bridges with poor condition due to exhausted service life and maintaining bridges currently in fair condition within the constraint of the operating and CIP budgets constitute a tremendous challenge for the Prince George's County DPW\&T. This compound effect or bubble expenditure is averted by initiating bridge preservation repairs such as those included in this Bridge Project Grant and spreading the cost of the bridge preservation dollars through the next ten to fifteen years with the purpose of reducing the cost of future maintenance and delaying the need for major rehabilitation or replacement of those structures currently having sub-elements in fair or poor condition.

This benefit of averting the bubble expenditure is quantified by amortizing the cost of a bridge replacement from the end of the construction year (2025) through the remaining service life of the bridge within the analysis period and discounting this value at 7% and 3% to the year 2022 .

Average cost of major bridge rehabilitation/replacement $=\$ 4,400,000$ (2022 value).
Number of service years remaining $=$ The youngest bridge is 25 years old, so the remaining number of service years, assuming it was built for a 40 -year service life, is $40-25=15$ years.

Amortized value $=\$ 4,400,000 / 15$ years $=\$ 293,333 /$ year from 2026 through 2040.
Discounting is computed as follows: ${ }^{14}$

$$
\text { Present value }=\text { Future value } /(1+i)^{t}
$$

Where: i is the discount rate, $t=$ years in the future for payment (based year is $t=0$).
Example:
For the year 2026 the discounted value at 7% is $=\$ 293,333 /(1.07)^{4}=\$ 223,782.00 /$ year
The discounted value at 3% is $=\$ 293,333 /(1.03)^{4}=\$ 260,622.00 /$ year

[^7]
Alternative 2 - Avert Increased Bridge Inspection Cost (qualitative benefit)

A consequence of loss of capacity on the primary structural members and load posting is the increased frequency of the bridge inspection activities to a period less than the standard routine inspection period. The 2022 NBIS states that a routine bridge inspection must be performed at an interval not to exceed 24 months to properly assess the bridge components and evaluate maintenance needs. The MDOT State Highway Administration Guidelines and Procedures Memorandum SI-12-06(4) supports this requirement for routine bridge inspections and SI-12$05(4)$ stablishes a procedure to increase the inspection frequency based on the load rating factor, load posting, condition rating value, and ADT volumes. For bridges with operating rating factors for any legal vehicle <1.0, increasing the frequency of the inspection is required. For bridges with inventory rating factors for any legal vehicle <1.0, the determination of reducing the inspection frequency will depend on the condition rating and the ADT values.

The reduced inspection frequency can vary from 12 to 6 months depending on the severity and extent of the condition. Bridges on the increased inspection cycle will require additional cost expenditure in addition to the routine inspections. By preserving the bridges in good state of repair the loss of capacity can be delayed, thus delaying or preventing altogether additional costs related to frequent inspections.

Alternative 2 - Resiliency of Construction (qualitative benefit)

A good maintenance program will help to reduce the potential for deterioration that leads to a bridge failure. ${ }^{15}$ Cleaning and painting of steel bridges and repair of concrete deterioration can reduce deterioration and extend the service life of the structure. The maintenance of drainage features such as scuppers, basins, downspouts and troughs can substantially help preserve other main components for the structure in goods state of repair. Deck joint repairs can help prevent the deterioration of steel elements such as bearings, beams, diaphragms, connections, and other superstructure and substructure elements by preventing water-induced corrosion. Effective deck joints can also prevent chloride contamination on the concrete elements of the substructure by warding off moisture and salty runoff.

Alternative 2 - Bundled Project (qualitative benefit)

The Prince George's County will realize savings by bundling the development of the design, procurement, and construction of the group of bridge structures. These savings are mainly caused by the efficiency of designing and constructing similar work activities, spreading administrative costs, and overall requiring fewer man-hour to complete the same project.

[^8]
BCA RESULTS:

The BCA comparison for the baseline Alternative 1 No-Build and Alternative 2 Bridge Preservation is shown on Table 21a below. The Benefit to Cost Ratio for the nominal cost of the Bridge Project varies from 3.13 to 44.51 . The Benefit to Cost Ratio for the Discounted Cost at 7% varies from 2.10 to 22.98 . The Benefit to Cost Ratio for the Discounted Cost at 3% varies from 2.59 to 32.91 .

The results of the BCA are summarized in the BCA narrative and are reproduced in the table below.

Table 21a. Comparison Summary No-Build (Baseline) vs. Bridge Preservation			
	Undiscounted Cost BCR	Cost Discounted at 7% BCR	Cost Discounted at 3\% BCR
1. Bridge No. P-0117, Cherrywood Ln. over I-95/I-495	3.13	2.10	2.59
2. Bridge No. P-0169, Contee Road over CSX Railroad	44.03	22.76	32.57
3. Bridge No. P-0185, Metzerott Road over Paint Branch	6.96	4.06	5.41
4. Bridge No. P-0190, Sellman Road over Little Paint Branch	4.22	2.56	3.33
5. Bridge No. P-0198031, Cherry Lane (Eastbound) over CSX Railroad	42.44	21.81	31.32
6. Bridge No. P-0198041, Cherry Lane (Westbound) over CSX Railroad	42.43	21.81	31.31
7. Bridge No. P-0204, Ritchie Road over the Southwest Branch	44.51	22.98	32.91
8. Bridge No. P-0205, Walker Mill Road over the Southwest Branch	40.28	20.94	29.84
9. Bridge No. P-0220, Riverdale Road over Tributary to Northeast Branch	-0.45^{*}	0.17^{*}	-0.10^{*}
10. Bridge No. P-0273, Carter Ave. over Amtrak Railroad	18.10	9.64	13.55
11. Bridge No. P-0283, Lottsford Road over Western Branch	23.43	12.35	17.47
12. Bridge No. P-0294, Decatur Street over Northeast Branch	11.64	6.33	8.79
13. Bridge No. P-0396, Tucker Road over Henson Creek	0.87^{*}	0.88^{*}	0.89^{*}
14. Bridge No. P-0484, McKendree Road over Timothy Branch	9.53	5.20	7.21

Table 21a. Comparison Summary No-Build (Baseline) vs. Bridge Preservation			
Bridge No.	Undiscounted Cost BCR	Cost Discounted at 7% BCR	Cost Discounted at 3\% BCR
15. Bridge No. P-0490, Gallahan Road over Tinkers Creek	6.62	3.73	5.07
16. Bridge No. P-0579, Derrick Place over Butler Branch	-4.29^{*}	-1.78^{*}	-2.93^{*}
17. Bridge No. P-0596, Leeland Road over Collington Branch	3.43	2.13	2.74
Maximum BCR Value $=$	44.51	22.98	32.91
Minimum BCR Value $=$	3.13	2.10	2.59

* Bridge structures receiving the most benefit from the bundled Bridge Project.

References:

1. Work Zone Road User Costs. FHWA Office of Operations.
2. USDOT Benefit-Cost Analysis Guidance for Discretionary Grant Programs. March 2022.
3. FHWA Bride Preservation Guide. 2018.
4. USDOT Framework for Improving Resilience of Bridge Design. Publication No. FHWA-IF-11-016. January 2011.
5. Prince George's County DPW\&T Operating Budget Report for FY 2022, FY 2021, FY 2020, and FY 2019. https://www.princegeorgescountymd.gov/565/Operating-Budgets.
6. MDOT SHA Structure Asset Management (SAM) System. Accessed in August 2022.
7. I-35W Bridge collapse 15 years later: How much safer are Minnesota's bridges? By Caroline Cummings. Article published on CBS News, Minnesota on July 31, 2022. https://www.cbsnews.com/minnesota/news/i-35w-bridge-collapse-15-years-later-how-much-safer-are-minnesotas-bridges/

BENEFIT - COST ANALYSIS
TABLE 21a - BCR SUMMARY

No.	Bridge No.	Road Name and Crossing			
1	P-0117	CHERRYWOOD LANE OVER I-95/I-495	3.13	2.10	2.59
2	P-0169	CONTEE ROAD OVER CSX RAILROAD	44.03	22.76	32.57
3	P-0185	METZEROTT ROAD OVER PAINT BRANCH	6.96	4.06	5.41
4	P-0190	SELLMAN ROAD OVER LITTLE PAINT BRANCH	4.22	2.56	3.33
5	P-0198031	CHERRY LANE (EAST) OVER CSX RAILROAD	42.44	21.81	31.32
6	P-0198041	CHERRY LANE (WEST) OVER CSX RAILROAD	42.43	21.81	31.31
7	P-0204	RITCHIE ROAD OVER SOUTHWEST BRANCH	44.51	22.98	32.91
8	P-0205	WALKER MILL ROAD OVER SOUTHWEST BRANCH	40.28	20.94	29.84
9	P-0220	RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH	-0.45	0.17	-0.10
10	P-0273	CARTER AVENUE OVER AMTRAK RAILROAD	18.10	9.64	13.55
11	P-0283	LOTTSFORD ROAD OVER WESTERN BRANCH	23.43	12.35	17.47
12	P-0294	DECATUR STREET OVER NORTHEAST BRANCH	11.64	6.33	8.79
13	P-0396	TUCKER ROAD OVER HENSON CREEK	0.87	0.88	0.89
14	P-0484	MCKENDREE ROAD OVER TIMOTHY BRANCH	9.53	5.20	7.21
15	P-0490	GALLAHAN ROAD OVER TINKERS CREEK	6.62	3.73	5.07
16	P-0579	DERRICK PLACE OVER BUTLER BRANCH	-4.29	-1.78	-2.93
17	P-0596	LEELAND ROAD OVER COLLINGTON BRANCH	3.43	2.13	2.74
		MAXIMUM BCR =	44.51	22.98	32.91
		MINIMUM BCR =	3.13	2.10	2.59

\square THESE STRUCTURES RECEIVE THE MOST BENEFIT FROM THE BUNDLED BRIDGE PROJECT

Year	Project Year	O\&M Cost		$\begin{gathered} \text { Discounted O\&M } \\ \text { Cost at 7\% } \end{gathered}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at $\mathbf{7 \%}$		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	$(17,098.58)$	\$	(14,934.56)					\$	(19,392.29)	\$	$(16,937.98)$	\$	(18,279.10)
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(298,097.57)	\$	(243,336.42)	\$	(300,391.29)	\$	(245,208.77)	\$	(274,900.58)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(17,789.36)	\$	(13,571.42)	\$	(304,059.52)	\$	(231,965.55)	\$	(324,142.60)	\$	(247,286.84)	\$	(287,996.50
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(310,140.71)	\$	(221,126.04)	\$	(312,434.43)	\$	(222,761.43)	\$	(269,508.68
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(18,508.05)	\$	(12,332.70)	\$	(316,343.53)	\$	(210,793.05)	\$	(337,145.29)	\$	(224,654.14)	\$	(282,353.88)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(322,670.40)	\$	(200,942.91)	\$	(324,964.11)	\$	(202,371.32)	\$	(264,225.56)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(19,255.78)	\$	(11,207.04)	\$	(329,123.81)	\$	(191,553.05)	\$	(350,673.30)	\$	(204,095.05)	\$	(276,824.74)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(335,706.28)	\$	(182,601.97)	\$	(338,000.00)	\$	(183,849.60)	\$	(259,048.85
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(20,033.71)	\$	(10,184.12)	\$	(342,420.41)	\$	(174,069.17)	\$	(364,747.83)	\$	(185,419.30)	\$	(271,406.64)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(349,268.82)	\$	(165,935.10)	\$	(351,562.53)	\$	(167,024.83)	\$	(253,976.25)
2034	13	\$	(2,293.71)	\$	$(1,018.44)$	\$	(20,843.07)	\$	(9,254.57)	\$	(356,254.19)	\$	(158,181.12)	\$	(379,390.98)	\$	(168,454.13)	\$	(266,097.20)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	$(363,379.28)$	\$	(150,789.48)	\$	(365,672.99)	\$	(151,741.29)	\$	(249,005.51)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(21,685.13)	\$	(8,409.87)	\$	(370,646.86)	\$	(143,743.24)	\$	(394,625.71)	\$	(153,042.65)	\$	(260,894.08
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(378,059.80)	\$	(137,026.27)	\$	(380,353.51)	\$	(137,857.62)	\$	(244,134.45
2038	17	\$	$(2,293.71)$	\$	(776.96)	\$	(22,561.21)	\$	(7,642.26)	\$	(385,621.00)	\$	(130,623.17)	\$	(410,475.92)	\$	(139,042.40)	\$	(255,795.02)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(393,333.42)	\$	(124,519.29)	\$	(395,627.13)	\$	(125,245.42)	\$	(239,360.92)
2040	19	\$	(2,293.71)	\$	(678.63)	\$	(23,472.68)	\$	(6,944.72)	\$	(401,200.08)	\$	(118,700.63)	\$	(426,966.48)	\$	(126,323.98)	\$	(250,797.81)
TOTAL=		\$	$(43,580.58)$	\$	$(25,366.39)$	\$	(181,247.57)	\$	(94,481.26)		$(5,556,325.68)$	\$	(2,785,906.47)	\$	$(5,781,153.82)$	\$	$(2,905,754.12)$		$(4,229,126.40)$

BRIDGE: P-0169 CONTEE ROAD OVER CSX RAILROAD
ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost	$\begin{array}{\|c\|} \text { Discounted O\&M } \\ \text { Cost at } 7 \% \end{array}$	Work Zone Cost	Discounted Work Zone Cost at 7\%	Delay Freight Travel Cost	Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		$\begin{aligned} & \text { tal Cost Alt } 1 \\ & \text { counted at } 7 \% \end{aligned}$	Total Cost Alt 1 Discounted at 3\%	
2022	1	(2,293.71)	(2,293.71)					\$	(2,293.71)	\$	(2,293.71)	\$	$(2,293.71)$
202	2	(2,293.71)	(2,143.66)					\$	(2,293.71)	\$	$(2,143.66)$	\$	$(2,226.91)$
2024	3	(2,293.71)	(2,003.42)	\$ (32,132.80)	(28,066.03)			\$	(34,426.51)	\$	(30,069.45)		(32,450.29)
2025	4	$(2,293.71)$	(1,872.35)			(2,063,938.35)	(1,684,788.49)		(2,066,232.06)	\$	$(1,686,660.84)$		(1,890,895.04)
2026	5	(2,293.71)	$(1,749.86)$	(32,132.80)	(24,513.96)	(2,105,217.11)	$(1,606,060.06)$		(2,139,643.6	\$	$(1,632,323.88)$	\$	(1,901,045.65)
202	6	(2,293.71)	(1,635.39)			(2,147,321.45)	(1,531,010.52)		(2,149,615.17)	\$	$(1,532,645.91)$	\$	$(1,854,276.93)$
2028	7	(2,293.71)	(1,528.40)	(33,430.96)	(22,276.46)	$(2,190,267.88)$	$(1,459,467.97)$		(2,225,992.56)	\$	(1,483,272.83)	\$	$(1,864,233.73)$
2029	8	(2,293.71)	(1,428.41)			(2,234,073.24)	(1,391,268.53)		$(2,236,366.96)$	\$	$(1,392,696.94)$	\$	(1,818,370.99)
2030	9	$(2,293.71)$	(1,334.96)	\$ (34,781.57)	(20,243.19)	\$ (2,278,754.71)	$(1,326,255.99)$		(2,315,830.00)	\$	(1,347,834.14)		(1,828,137.58)
2031	10	(2,293.71)	(1,247.63)			(2,324,329.80)	(1,264,281.41)		(2,326,623.51)	\$	(1,265,529.04)		(1,783,163.19)
2032	11	(2,293.71)	$(1,166.01)$	(36,186.75)	(18,395.51)	(2,370,816.40)	$(1,205,202.84)$		(2,409,296.86)	\$	(1,224,764.35)	\$	(1,792,743.13)
2033	12	(2,293.71)	$(1,089.73)$			\$ (2,418,232.72)	(1,148,884.95)		$(2,420,526.44)$	\$	$(1,149,974.67)$	\$	(1,748,639.80)
2034	13	(2,293.71)	(1,018.44)	(37,648.69)	$(16,716.47)$	\$ (2,466,597.38)	$(1,095,198.73)$		$(2,506,539.79)$	\$	(1,112,933.64)	\$	(1,758,036.58)
2035	14	(2,293.71)	(951.81)			\$ (2,515,929.33)	(1,044,021.22)		$(2,518,223.04)$	\$	$(1,044,973.03)$	\$	(1,714,787.35)
2036	15	(2,293.71)	(889.54)	\$ (39,169.70)	(15,190.69)	\$ (2,566,247.91)	(995,235.19)		(2,607,711.33)	\$	(1,011,315.41)	\$	(1,724,004.39)
2037	16	(2,293.71)	(831.35)			\$ (2,617,572.87)	(948,728.87)		(2,619,866.59)	\$	(949,560.22)		$(1,681,592.67)$
2038	17	(2,293.71)	(776.96)	(40,752.16)	(13,804.17)	(2,669,924.33)	(904,395.74)		(2,712,970.20)	\$	(918,976.87)		$(1,690,633.34)$
2039	18	(2,293.71)	(726.13)			\$ (2,723,322.82)	(862,134.26)		(2,725,616.53)	\$	(862,860.39)		$(1,649,042.83)$
2040	19	\$ (2,293.71)	(678.63)	\$ (42,398.55)	(12,544.20)	\$ (2,777,789.27)	(821,847.61)		(2,822,481.53)	\$	(835,070.44)		(1,657,910.43)
	AL=	$(43,580.58)$	(25,366.39)	$(328,633.99)$	(171,750.68)	\$ (38,470,335.57)	$(19,288,782.38)$		$(38,842,550.13)$	\$	(19,485,899.44)		(28,394,484.53)

BRIDGE: P-0185 METZEROTT ROAD OVER PAINT BRANCH

Year	Project Year		O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$	Work Zone Cost	Discounted Work Zone Cost at 7\%	Delay Freight Travel Cost	Discounted Delay Freight Travel Cost at $\mathbf{7 \%}$	Total Cost Alternative 1	Total Cost Alt 1 Discounted at 7\%	Total Cost Alt 1 Discounted at 3\%
2022	1	\$	(2,293.71)	\$	(2,293.71)					(2,293.71)	(2,293.71)	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)					(2,293.71	(2,143.66)	(2,226.91)
24	3	\$	(2,293.71)	\$	$(2,003.42)$	(20,419.80)	(17,835.44)			(22,713.5	(19,838.86)	(21,409.66)
2025	4	\$	(2,293.71)	\$	(1,872.35)			(460,161.01)	(375,628.46)	(462,454.73)	(377,500.81)	(423,211.59
2026	5	\$	(2,293.71)	\$	(1,749.86)	(21,244.76)	$(16,207.52)$	(469,364.23)	(358,075.73)	(492,902.70)	(376,033.11)	(437,937.67)
2027	6	\$	(2,293.71)	\$	(1,635.39)			(478,751.52)	(341,343.22)	(481,045.23)	(342,978.60)	(414,953.84)
28	7	\$	(2,293.71)	\$	(1,528.40)	(22,103.04)	(14,728.19)	(488,326.55)	$(325,392.60)$	(512,723.31)	(341,649.19)	(429,397.70)
2029	8	\$	(2,293.71)	\$	$(1,428.41)$			$(498,093.08)$	(310,187.34)	(500,386.79)	(311,615.75)	(406,860.25)
2030	9	\$	(2,293.71)	\$	$(1,334.96)$	(22,996.01)	(13,383.89)	(508,054.94)	(295,692.60)	(533,344.66)	(310,411.45)	(421,027.20)
2031	10	\$	(2,293.71)	\$	(1,247.63)			(518,216.04)	(281,875.19)	(520,509.75)	(283,122.82)	(398,927.38)
2032	11	\$	(2,293.71)	\$	(1,166.01)	(23,925.05)	(12,162.28)	(528,580.36)	(268,703.45)	(554,799.12)	(282,031.74)	(412,822.65
2033	12	\$	(2,293.71)	\$	$(1,089.73)$			(539,151.97)	(256,147.22)	(541,445.68)	(257,236.94)	(391,151.88)
2034	13	\$	(2,293.71)	\$	$(1,018.44)$	(24,891.62)	(11,052.18)	(549,935.01)	(244,177.72)	(577,120.34)	(256,248.33)	(404,780.59)
2035	14	\$	(2,293.71)	\$	(951.81)			(560,933.71)	(232,767.55)	(563,227.42)	(233,719.36)	(383,530.47)
2036	15	\$	(2,293.71)	\$	(889.54)	(25,897.24)	(10,043.40)	(572,152.38)	(221,890.56)	(600,343.33)	(232,823.50)	(396,897.67)
2037	16	\$	(2,293.71)	\$	(831.35)			(583,595.43)	(211,521.84)	(585,889.14)	(212,353.19)	(376,059.95)
2038	17	\$	(2,293.71)	\$	(776.96)	(26,943.49)	(9,126.69)	(595,267.34)	(201,637.64)	(624,504.54)	(211,541.29)	(389, 170.58)
2039	18	\$	(2,293.71)	\$	(726.13)			(607, 172.68)	(192,215.32)	(609,466.40)	(192,941.45)	(368,737.19)
2040	19	\$	(2,293.71)	\$	(678.63)	\$ (28,032.00)	(8,293.66)	(619,316.14)	(183,233.30)	(649,641.86)	(192,205.58)	(381,596.12
TOTAL $=$ $\$$ $(43,580.58)$ $\$$ $(25,366.39)$ $\$$ $(216,452.99)$ $\$$ $(112,833.24)$ $\$$ $(8,577,072.38)$ $\$$ $(4,300,489.72)$ $\$$ $(8,837,105.95)$ $\$$ $(4,438,689.35)$ $\$(6,462,993.03)$												

BRIDGE: P-0190 SELLMAN ROAD OVER LITTLE PAINT BRANCH
ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at $\mathbf{7 \%}$		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	$(2,293.71)$									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	$(2,143.66)$									\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	$(2,003.42)$	\$	(8,191.30)	\$	(7,154.60)					\$	(10,485.02	\$	(9,158.02)	\$	$(9,883.13)$
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(360,691.86)	\$	(294,432.00)	\$	(362,985.58)	\$	(296,304.36)	\$	(332,183.23)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(8,522.23)	\$	(6,501.57)	\$	(367,905.70)	\$	(280,673.50)	\$	(378,721.65)	\$	(288,924.93)	\$	(336,489.28)
2027	6	\$	(2,293.71)	\$	$(1,635.39)$					\$	(375,263.82)	\$	(267,557.91)	\$	(377,557.53)	\$	(269,193.30)	\$	(325,684.44)
2028	7	\$	$(2,293.71)$	\$	(1,528.40)	\$	(8,866.53)	\$	(5,908.14)	\$	(382,769.09)	\$	(255,055.21)	\$	(393,929.34)	\$	(262,491.75)	\$	(329,909.62)
2029	8	\$	(2,293.71)	\$	$(1,428.41)$					\$	(390,424.47)	\$	(243,136.74)	\$	(392,718.19)	\$	(244,565.15)	\$	(319,315.83)
2030	9	\$	(2,293.71)	\$	$(1,334.96)$	\$	(9,224.74)	\$	(5,368.88)	\$	(398,232.96)	\$	(231,775.21)	\$	(409,751.42)	\$	(238,479.05)	\$	(323,461.55)
331	10	\$	(2,293.71)	\$	$(1,247.63)$					\$	(406, 197.62)	\$	(220,944.59)	\$	(408,491.34)	\$	(222,192.22)	\$	(313,074.60)
2032	11	\$	(2,293.71)	\$	$(1,166.01)$	\$	(9,597.42)	\$	(4,878.84)	\$	(414,321.58)	\$	(210,620.08)	\$	(426,212.71)	\$	(216,664.93)	\$	(317,142.28)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(422,608.01)	\$	(200,778.02)	\$	(424,901.72)	\$	(201,867.75)	\$	(306,958.04)
2034	13	\$	$(2,293.71)$	\$	$(1,018.44)$	\$	(9,985.15)	\$	(4,433.53)	\$	(431,060.17)	\$	(191,395.87)	\$	(443,339.03)	\$	(196,847.83)	\$	(310,949.08)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(439,681.37)	\$	(182,452.14)	\$	(441,975.08)	\$	(183,403.95)	\$	(300,963.53)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(10,388.55)	\$	(4,028.86)	\$	(448,475.00)	\$	(173,926.34)	\$	(461,157.26)	\$	(178,844.74)	\$	(304,879.28)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(457,444.50)	\$	(165,798.94)	\$	(459,738.21)	\$	(166,630.29)	\$	(295,088.46)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(10,808.25)	\$	(3,661.13)	\$	(466,593.39)	\$	(158,051.32)	\$	(479,695.35)	\$	(162,489.41)	\$	(298,930.28)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(475,925.26)	\$	(150,665.75)	\$	(478,218.97)	\$	(151,391.88)	\$	(289,330.34)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(11,244.90)	\$	(3,326.96)	\$	(485,443.76)	\$	(143,625.29)	\$	(498,982.38)	\$	(147,630.88)	\$	(293,099.56)
TOTAL=		\$	$(43,580.58)$	\$	$(25,366.39)$	\$	(86,829.07)	\$	$(45,262.51)$	\$	$(6,723,038.56)$	\$	$(3,370,888.91)$	\$	(6,853,448.20)	\$	$(3,441,517.81)$		(5,011,863.15)

BRIDGE: P-0198031 CHERRY LANE (EAST) OVER CSX RAILROAD

ALTERNATIVE 1-NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		Total Cost Alt 1		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)		(2,293.71)		(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	$(2,143.66)$	S	(2,226.91)
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(16,847.17)	\$	(14,714.97)					\$	(19,140.89)	\$	(16,718.39)		(18,042.12)
20	4	\$	(2,293.71)	\$	(1,872.35)					\$	(2,019,316.67)	\$	(1,648,363.91)	\$	(2,021,610.39)	\$	(1,650,236.27)	\$	(1,850,059.88)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(17,527.80)	\$	(13,371.87)	\$	(2,059,703.00)	\$	(1,571,337.56)	\$	(2,079,524.52)	\$	(1,586,459.30)	\$	(1,847,630.60)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(2,100,897.06)	\$	(1,497,910.57)	\$	$(2,103,190.78)$	\$	(1,499,545.96)	\$	(1,814,230.84)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(18,235.92)	\$	(12,151.37)	\$	(2,142,915.01)	\$	(1,427,914.75)	\$	(2,163,444.64)	\$	(1,441,594.51)		(1,811,850.83)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(2,185,773.31)	\$	(1,361,189.76)	\$	(2,188,067.02)	\$	(1,362,618.17)		(1,779,098.72)
2030	9	\$	$(2,293.71)$	\$	(1,334.96)	\$	(18,972.65)	\$	(11,042.26)	\$	(2,229,488.77)	\$	(1,297,582.76)	\$	(2,250,755.14)	\$	(1,309,959.98)	\$	(1,776,766.89)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(2,274,078.55)	\$	(1,236,948.06)	\$	(2,276,372.26)	\$	(1,238,195.68)	\$	(1,744,649.79)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(19,739.15)	\$	$(10,034.38)$	\$	(2,319,560.12)	\$	(1,179,146.74)	\$	(2,341,592.98)	\$	(1,190,347.14)	\$	(1,742,365.09)
2033	12	\$	$(2,293.71)$	\$	(1,089.73)					\$	(2,365,951.32)	\$	(1,124,046.43)	\$	(2,368,245.04)	\$	(1,125,136.16)	\$	$(1,710,870.60)$
2034	13	\$	$(2,293.71)$	\$	(1,018.44)	\$	(20,536.61)	\$	(9,118.50)	\$	(2,413,270.35)	\$	$(1,071,520.90)$	\$	$(2,436,100.67)$	\$	$(1,081,657.83)$	\$	(1,708,632.00)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(2,461,535.75)	\$	(1,021,449.83)	\$	(2,463,829.47)	\$	(1,022,401.64)		(1,677,747.98)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(21,366.29)	\$	(8,286.22)	\$	(2,510,766.47)	\$	(973,718.53)	\$	(2,534,426.47)	\$	(982,894.28)		(1,675,554.47)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(2,560,981.80)	\$	(928,217.66)	\$	(2,563,275.51)	\$	(929,049.01)		(1,645,269.01)
2038	17	\$	$(2,293.71)$	\$	(776.96)	\$	(22,229.49)	\$	(7,529.90)	\$	(2,612,201.44)	\$	(884,843.00)	\$	(2,636,724.64)	\$	(893,149.86)		(1,643,119.62)
2039	18	\$	$(2,293.71)$	\$	(726.13)					\$	$(2,664,445.46)$	\$	(843,495.20)	\$	(2,666,739.18)	\$	(844,221.33)		(1,613,421.06)
2040	19	\$	(2,293.71)	\$	(678.63)	\$	(23,127.56)	\$	(6,842.61)	\$	$(2,717,734.37)$	\$	(804,079.54)	\$	(2,743,155.65)	\$	(811,600.77)		$(1,611,314.83)$
TOTAL=		\$	(43,580.58)	\$	$(25,366.39)$	\$	(178,582.65)	\$	(93,092.08)	\$	$(37,638,619.46)$	\$	(18,871,765.19)	\$	$(37,860,782.68)$		(18,990,22		(1)67,144.97

BRIDGE: P-0198041 CHERRY LANE (WEST) OVER CSX RAILROAD
ALTERNATIVE 1 - NO BUILD

Year	Project Year	\&M Cost		$\begin{gathered} \text { Discounted O\&M } \\ \text { Cost at 7\% } \end{gathered}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	$(2,293.71)$									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	(2,226.91)
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(16,845.62)	\$	(14,713.62)					\$	(19,139.34)	\$	(16,717.04)	\$	(18,040.66)
202	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(2,019,130.75)	\$	(1,648,212.14)	\$	(2,021,424.46)	\$	(1,650,084.50)	\$	(1,849,889.74)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(17,526.19)	\$	(13,370.64)	\$	(2,059,513.36)	\$	(1,571,192.88)	\$	(2,079,333.26)	\$	(1,586,313.39)	\$	(1,847,460.67)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(2,100,703.63)	\$	(1,497,772.66)	\$	(2,102,997.34)	\$	(1,499,408.04)	\$	(1,814,063.98)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(18,234.24)	\$	(12,150.25)	\$	(2,142,717.70)	\$	(1,427,783.28)	\$	(2,163,245.66)	\$	(1,441,461.92)	\$	(1,811,684.18)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(2,185,572.06)	\$	(1,361,064.43)	\$	(2,187,865.77)	\$	(1,362,492.84)	\$	(1,778,935.09)
2030	9	\$	$(2,293.71)$	\$	(1,334.96)	\$	(18,970.91)	\$	(11,041.24)	\$	(2,229,283.50)	\$	(1,297,463.29)	\$	(2,250,548.12)	\$	(1,309,839.50)	\$	(1,776,603.47
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	$(2,273,869.17)$	\$	$(1,236,834.17)$	\$	$(2,276,162.88)$	\$	(1,238,081.80)	\$	(1,744,489.32)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(19,737.33)	\$	(10,033.46)	\$	(2,319,346.55)	\$	(1,179,038.18)	\$	(2,341,377.60)	\$	(1,190,237.64)	\$	(1,742,204.82
2033	12	\$	(2,293.71)	\$	(1,089.73)					\$	(2,365,733.48)	\$	$(1,123,942.94)$	\$	(2,368,027.20)	\$	(1,125,032.66)	\$	(1,710,713.23)
2034	13	\$	(2,293.71)	\$	(1,018.44)	\$	(20,534.72)	\$	(9,117.66)	\$	(2,413,048.15)	\$	(1,071,422.24)	\$	(2,435,876.59)	\$	(1,081,558.34)	\$	(1,708,474.83)
2035	14	\$	$(2,293.71)$	\$	(951.81)					\$	(2,461,309.11)	\$	$(1,021,355.78)$	\$	$(2,463,602.83)$	\$	$(1,022,307.59)$	\$	(1,677,593.65)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(21,364.32)	\$	(8,285.45)	\$	(2,510,535.30)	\$	(973,628.87)	\$	(2,534,193.33)	\$	(982,803.87)	\$	(1,675,400.34)
2037	16	\$	(2,293.71)	\$	(831.35)						(2,560,746.00)	\$	(928,132.20)	\$	$(2,563,039.72)$	\$	(928,963.54)	\$	(1,645,117.66)
2038	17	\$	$(2,293.71)$	\$	(776.96)	\$	(22,227.44)	\$	(7,529.20)	\$	(2,611,960.92)	\$	(884,761.53)	\$	(2,636,482.08)	\$	(893,067.70)	\$	(1,642,968.47)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(2,664,200.14)	\$	(843,417.54)	\$	(2,666,493.86)	\$	(844,143.67)	\$	(1,613,272.64)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(23,125.43)	\$	(6,841.98)	\$	(2,717,484.14)	\$	(804,005.50)	\$	$(2,742,903.29)$	\$	(811,526.11)	\$	(1,611,166.60)
TOTAL=		\$	(43,580.5	\$	$(25,366.39)$	\$	(178,566.21)	\$	(93,083.51)	\$	(37,635,153.97)	\$	(18,870,027.62)	\$	(37,857,300.76)		$(18,988,477.52)$		(27,672,599.9

BRIDGE: P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH

ALTERNATIVE 1-NO BUILD

$\begin{aligned} & \text { Year } \\ & \hline 2022 \\ & \hline \end{aligned}$	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
		\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	(2,226.91)
224	3	\$	(2,293.71)	\$	$(2,003.42)$	\$	(31,095.95)	\$	(27,160.41)					\$	(33,389.6	\$	(29,163.83)	\$	(31,472.96)
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(2,086,528.07)	\$	(1,703,228.43)	\$	(2,088,821.78)	\$	$(1,705,100.79)$	\$	(1,911,567.83)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(32,352.23)	\$	(24,681.36)	\$	(2,128,258.63)	\$	(1,623,638.32)	\$	(2,162,904.57)	\$	(1,650,069.54)	\$	(1,921,712.70)
2027	6	\$	(2,293.71)	\$	$(1,635.39)$					\$	(2,170,823.80)	\$	(1,547,767.37)	\$	(2,173,117.52)	\$	(1,549,402.76)	\$	(1,874,550.26)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(33,659.26)	\$	(22,428.58)	\$	(2,214,240.28)	\$	(1,475,441.79)	\$	(2,250,193.25)	\$	(1,499,398.77)	\$	(1,884,501.42)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(2,258,525.08)	\$	(1,406,495.91)	\$	(2,260,818.80)	\$	(1,407,924.32)	\$	(1,838,252.57)
2030	9	\$	$(2,293.71)$	\$	$(1,334.96)$	\$	(35,019.09)	\$	(20,381.43)	\$	(2,303,695.59)	\$	(1,340,771.80)	\$	(2,341,008.39)	\$	(1,362,488.20)	\$	(1,848,013.64)
2031	10	\$	(2,293.71)	\$	$(1,247.63)$					\$	(2,349,769.50)	\$	(1,278,118.92)	\$	(2,352,063.21)	\$	$(1,279,366.55)$	\$	$(1,802,660.60)$
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(36,433.86)	\$	(18,521.13)	\$	(2,396,764.89)	\$	(1,218,393.73)	\$	(2,435,492.46)	\$	(1,238,080.87)	\$	(1,812,235.12)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	$(2,444,700.18)$	\$	(1,161,459.45)	\$	(2,446,993.90)	\$	$(1,162,549.17)$	\$	(1,767,760.46)
2034	13	\$	$(2,293.71)$	\$	(1,018.44)	\$	(37,905.79)	\$	$(16,830.62)$	\$	(2,493,594.19)	\$	(1,107,185.64)	\$	(2,533,793.69)	\$	$(1,125,034.70)$	\$	(1,777,151.92)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(2,543,466.07)	\$	(1,055,447.99)	\$	(2,545,759.79)	\$	$(1,056,399.80)$	\$	(1,733,538.54)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(39,437.18)	\$	(15,294.42)	\$	(2,594,335.39)	\$	$(1,006,127.99)$	\$	(2,636,066.29)	\$	(1,022,311.96)	\$	(1,742,750.36)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(2,646,222.10)	\$	(959,112.67)	\$	(2,648,515.82)	\$	(959,944.02)	\$	(1,699,981.52)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(41,030.44)	\$	(13,898.43)	\$	(2,699,146.54)	\$	(914,294.32)	\$	(2,742,470.70)	\$	(928,969.71)	\$	(1,709,017.07)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(2,753,129.47)	\$	(871,570.29)	\$	(2,755,423.19)	\$	(872,296.42)	\$	(1,667,076.34)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(42,688.07)	\$	(12,629.86)	\$	(2,808,192.06)	\$	(830,842.70)	\$	(2,853,173.85)	\$	(844,151.19)		(1,675,938.94)

BRIDGE: P-0205 WALKER MILL ROAD OVER SOUTHWEST BRANCH
ALTERNATIVE 1-NO BUILD

Year	Project Year	\&M Cost		$\begin{array}{\|c} \text { Discounted O\&M } \\ \text { Cost at 7\% } \end{array}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at $\mathbf{7 \%}$		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									s	(2,293.71)	\$	$(2,143.66)$	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(53,217.78)	\$	$(46,482.47)$					\$	(55,511.50)	\$	$(48,485.89)$	\$	(52,324.91)
2025	4	\$	(2,293.71)	\$	(1,872.35)					\$	(1,832,323.97)	\$	(1,495,722.17)	\$	(1,834,617.68)	\$	(1,497,594.52)	\$	(1,678,935.07)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(55,367.78)	\$	(42,239.82)	\$	(1,868,970.45)	\$	(1,425,828.61)	\$	(1,926,631.94)	\$	(1,469,818.29)	\$	(1,711,787.53)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(1,906,349.86)	\$	(1,359,201.10)	\$	(1,908,643.57)	\$	(1,360,836.49)	\$	(1,646,412.71)
202	7	\$	(2,293.71)	\$	(1,528.40)	\$	(57,604.64)	\$	(38,384.40)	\$	(1,944,476.85)	\$	(1,295,687.03)	\$	(2,004,375.21)	\$	(1,335,599.83)	\$	(1,678,632.68)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(1,983,366.39)	\$	(1,235,140.91)	\$	(1,985,660.11)	\$	(1,236,569.32)	\$	(1,614,523.38)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(59,931.87)	\$	(34,880.89)	\$	(2,023,033.72)	\$	(1,177,424.04)	\$	(2,085,259.30)	\$	(1,213,639.90)	\$	(1,646,122.95)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(2,063,494.39)	\$	(1,122,404.23)	\$	(2,065,788.11)	\$	(1,123,651.86)	\$	(1,583,254.57)
203	11	\$	(2,293.71)	\$	(1,166.01)	\$	(62,353.11)	\$	(31,697.16)	\$	(2,104,764.28)	\$	(1,069,955.43)		(2,169,411.11)	\$	(1,102,818.60)	\$	(1,614,245.61)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(2,146,859.57)	\$	(1,019,957.52)	\$	(2,149,153.28)	\$	(1,021,047.24)	\$	(1,552,594.06)
2034	13	\$	(2,293.71)	\$	(1,018.44)	\$	(64,872.18)	\$	(28,804.02)	\$	(2,189,796.76)	\$	(972,295.95)	\$	(2,256,962.65)	\$	(1,002,118.41)	\$	(1,582,988.20)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(2,233,592.69)	\$	(926,861.56)	\$	(2,235,886.41)	\$	$(927,813.37)$	\$	$(1,522,529.85)$
2036	15	\$	(2,293.71)	\$	(889.54)	\$	$(67,493.02)$	\$	(26,174.96)	\$	(2,278,264.55)	\$	(883,550.27)	\$	$(2,348,051.28)$	\$	(910,614.77)	\$	(1,552,338.51)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(2,323,829.84)	\$	(842,262.88)	\$	(2,326,123.55)	\$	(843,094.22)	\$	(1,493,050.19)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(70,219.73)	\$	(23,785.85)	\$	(2,370,306.44)	\$	(802,904.80)		(2,442,819.88)	\$	(827,467.61)	\$	(1,522,284.59)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(2,417,712.56)	\$	(765,385.88)		$(2,420,006.28)$	\$	(766,112.01)		(1,464,143.60)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(73,056.61)	\$	(21,614.82)	\$	(2,466,066.82)	\$	(729,620.19)	\$	(2,541,417.14)	\$	(751,913.63)		(1,492,814.72)
TOTAL=		\$	(43,580.58)	\$	(25,366.39)	\$	(564,116.73)	\$	(294,064.39)	\$	(34,153,209.13)	\$	(17,124,202.55)	\$	(34,760,906.44)		(17,443,633.33)		(25,413,503.74)

BRIDGE: P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH

Year	Project Year	O\&M Cost		Discounted O\&M Cost at 7\%		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted DelayFreight Travel Cost at 7\%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	$(2,293.71)$									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	$(2,293.71)$	\$	$(2,143.66)$									\$	$(2,293.71)$	\$	$(2,143.66)$	\$	(2,226.91)
2024	3	\$	(2,293.71)	\$	$(2,003.42)$	\$	(6,616.39)	\$	(5,779.01)					\$	(8,910.11)	\$	(7,782.43)	\$	(8,398.63)
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(154,936.37)	\$	(126,474.23)	\$	(157,230.08)	\$	(128,346.58)	\$	(143,887.80)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(6,883.70)	\$	(5,251.54)	\$	(158,035.10)	\$	(120,564.22)	\$	(167,212.51)	\$	(127,565.62)	\$	(148,566.15)
2027	6	\$	(2,293.71)	\$	$(1,635.39)$					\$	(161,195.80)	\$	$(114,930.38)$	\$	(163,489.51)	\$	(116,565.76)	\$	(141,027.49)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(7,161.80)	\$	(4,772.21)	\$	(164,419.71)	\$	(109,559.80)	\$	(173,875.22)	\$	(115,860.40)	\$	(145,617.76)
2029	8	\$	$(2,293.71)$	\$	$(1,428.41)$					\$	(167,708.11)	\$	(104,440.18)	\$	(170,001.82)	\$	(105,868.59)	\$	(138,227.04)
2030	9	\$	(2,293.71)	\$	$(1,334.96)$	\$	(7,451.13)	\$	(4,336.63)	\$	(171,062.27)	\$	(99,559.80)	\$	(180,807.12)	\$	(105,231.39)	\$	(142,730.81)
203	10	\$	(2,293.71)	\$	$(1,247.63)$					\$	(174,483.52)	\$	(94,907.47)	\$	(176,777.23)	\$	(96,155.10)	\$	(135,485.03)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(7,752.16)	\$	(3,940.80)	\$	(177,973.19)	\$	$(90,472.54)$	\$	(188,019.06)	\$	(95,579.36)	\$	(139,903.84)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(181,532.65)	\$	(86,244.85)	\$	(183,826.36)	\$	(87,334.58)	\$	(132,800.08)
2034	13	\$	(2,293.71)	\$	$(1,018.44)$	\$	$(8,065.35)$	\$	(3,581.11)	\$	(185,163.30)	\$	(82,214.72)	\$	(195,522.36)	\$	(86,814.27)	\$	(137, 135.45
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(188,866.57)	\$	(78,372.91)	\$	$(191,160.28)$	\$	(79,324.72)	\$	(130,170.85)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(8,391.19)	\$	(3,254.25)	\$	(192,643.90)	\$	(74,710.63)	\$	(203,328.80)	\$	(78,854.41)	\$	(134,424.29)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(196,496.78)	\$	(71,219.47)	\$	(198,790.49)	\$	(72,050.82)	\$	(127,596.05)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(8,730.19)	\$	(2,957.22)	\$	(200,426.71)	\$	(67,891.46)	\$	(211,450.62)	\$	(71,625.64)	\$	(131,769.03)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(204,435.25)	\$	(64,718.96)	\$	(206,728.96)	\$	(65,445.10)	\$	(125,074.42)
2040	19	\$	(2,293.71)	\$	(678.63)	\$	$(9,082.89)$	\$	(2,687.30)	\$	(208,523.95)	\$	(61,694.71)	\$	(219,900.56)	\$	(65,060.64)	\$	(129,168.40)

BRIDGE: P-0273 CARTER AVENUE OVER AMTRAK RAILROAD
ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7\%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(23,881.45)	\$	(20,858.98)					\$	(26,175.16)	\$	(22,862.40)	\$	(24,672.60)
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(943,128.66)	\$	(769,873.92)	\$	(945,422.3)	\$	(771,746.28)	\$	(865,195.40)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(24,846.26)	\$	(18,955.09)	\$	(961,991.23)	\$	(733,898.51)	\$	(989,131.20)	\$	(754,603.46)	\$	(878,830.26)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(981,231.06)	\$	(699,604.18)	\$	(983,524.77)	\$	(701,239.57)	\$	(848,397.11)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(25,850.05)	\$	(17,224.98)	\$	$(1,000,855.68)$	\$	(666,912.40)	\$	(1,028,999.44)	\$	(685,665.77)	\$	(861,770.83)
29	8	\$	(2,293.71)	\$	(1,428.41)					\$	$(1,020,872.79)$	\$	(635,748.27)	\$	$(1,023,166.51)$	\$	(637,176.68)	\$	(831,928.00)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(26,894.39)	\$	(15,652.78)	\$	$(1,041,290.25)$	\$	(606,040.40)	\$	$(1,070,478.35)$	\$	(623,028.15)	\$	(845,045.49)
2031	10	\$	(2,293.71)	\$	$(1,247.63)$					\$	(1,062,116.05)	\$	(577,720.76)	\$	$(1,064,409.77)$	\$	(578,968.39)	\$	(815,781.46)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(27,980.92)	\$	(14,224.08)	\$	$(1,083,358.37)$	\$	(550,724.46)	\$	(1,113,633.01)	\$	(566,114.55)	\$	(828,647.55)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(1,105,025.54)	\$	(524,989.67)	\$	(1,107,319.26)	\$	(526,079.40)	\$	(799,950.99)
2034	13	\$	(2,293.71)	\$	(1,018.44)	\$	(29,111.35)	\$	(12,925.79)	\$	(1,127,126.05)	\$	(500,457.45)	\$	(1,158,531.12)	\$	(514,401.67)	\$	(812,570.42)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	$(1,149,668.57)$	\$	(477,071.58)	\$	(1,151,962.29)	\$	(478,023.39)	\$	(784,430.26)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(30,287.45)	\$	(11,745.99)	\$	(1,172,661.94)	\$	(454,778.52)	\$	(1,205,243.11)	\$	(467,414.06)	\$	(796,807.68)
2037	16	\$	(2,293.71)	\$	(831.35)						(1,196,115.18)	\$	(433,527.19)	\$	(1,198,408.90)	\$	(434,358.53)	\$	(769,213.07)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(31,511.06)	\$	$(10,673.89)$		(1,220,037.49)	\$	(413,268.91)	\$	(1,253,842.26)	\$	(424,719.75)	\$	(781,353.05)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(1,244,438.24)	\$	(393,957.28)	\$	(1,246,731.95)	\$	(394,683.41)	\$	(754,293.33)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(32,784.11)	\$	(9,699.63)	\$	(1,269,327.00)	\$	(375,548.06)	\$	(1,304,404.82)	\$	(385,926.32)	\$	(766,200.36)
TOTAL=		\$	(43,580.5	\$	$(25,366.39)$	\$	(223,147.02)	\$	(131,961.21)	\$	(17,579,244.11)	\$	$(8,814,121.56)$	\$	(17,875,971.71)	\$	(8,971,449.16)		13,069,608.4

BRIDGE: P-0283 LOTTSFORD ROAD OVER WESTERN BRANCH

ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost	Discounted Work Zone Cost at 7\%	Delay Freight Travel Cost	Discounted Delay Freight Travel Cost at 7%	Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)					\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
223	2	\$	(2,293.71)	\$	(2,143.66)					\$	(2,293.7	\$	(2,143.6	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	(27,793.51)	(24,275.92)			\$	(30,087.22)	\$	(26,279.34)		(28,360.09)
2025	4	\$	(2,293.71)	\$	$(1,872.35)$			(1,167,972.32)	(953,413.32)	\$	(1,170,266.03)	\$	(955,285.68)		(1,070,959.20)
2026	5	\$	(2,293.71)	\$	(1,749.86)	(28,916.36)	(22,060.16)	(1,191,331.76)	(908,861.30)	\$	(1,222,541.84)	\$	(932,671.32)		$(1,086,212.59)$
2027	6	\$	$(2,293.71)$	\$	(1,635.39)			(1,215,158.40)	(866,391.14)	\$	(1,217,452.11)	\$	(868,026.5	\$	(1,050,184.89)
2028	7	\$	(2,293.71)	\$	(1,528.40)	(30,084.58)	(20,046.63)	(1,239,461.57)	(825,905.58)	\$	(1,271,839.87)	\$	(847,480.60)	\$	$(1,065,145.86)$
2029	8	\$	(2,293.71)	\$	(1,428.41)			(1,264,250.80)	(787,311.86)	\$	$(1,266,544.51)$	\$	(788,740.27)	\$	$(1,029,816.59)$
2030	9	\$	(2,293.71)	\$	$(1,334.96)$	(31,300.00)	(18,216.89)	$(1,289,535.81)$	(750,521.58)	\$	(1,323,129.53)	\$	(770,073.43)		$(1,044,490.67)$
2031	10	\$	(2,293.71)	\$	(1,247.63)			(1,315,326.53)	(715,450.48)	\$	(1,317,620.24)	\$	(716,698.11)		$(1,009,846.20)$
2032	11	\$	(2,293.71)	\$	(1,166.01)	(32,564.52)	$(16,554.15)$	(1,341,633.06)	(682,018.22)	\$	$(1,376,491.30)$	\$	(699,738.38)	\$	$(1,024,238.80)$
2033	12	\$	(2,293.71)	\$	$(1,089.73)$			(1,368,465.72)	(650,148.21)	\$	(1,370,759.44)	\$	(651,237.93)	\$	(990,265.78)
2034	13	\$	(2,293.71)	\$	(1,018.44)	(33,880.13)	$(15,043.18)$	$(1,395,835.04)$	(619,767.45)	\$	(1,432,008.88)	\$	(635,829.07)	\$	$(1,004,382.22)$
2035	14	\$	(2,293.71)	\$	(951.81)			\$ (1,423,751.74)	(590,806.35)	\$	$(1,426,045.45)$	\$	(591,758.16)	\$	(971,067.56)
2036	15	\$	(2,293.71)	\$	(889.54)	(35,248.89)	(13,670.13)	(1,452,226.77)	(563,198.58)	\$	(1,489,769.37)	\$	(577,758.25)	\$	(984,913.06)
2037	16	\$	(2,293.71)	\$	(831.35)			(1,481,271.31)	(536,880.89)	\$	(1,483,565.02)	\$	(537,712.24)		(952,243.93)
2038	17	\$	(2,293.71)	\$	(776.96)	(36,672.94)	$(12,422.39)$	(1,510,896.73)	(511,793.00)	\$	(1,549,863.39)	\$	(524,992.35)		(965,823.62)
2039	18	\$	(2,293.71)	\$	(726.13)			(1,541,114.67)	(487,877.44)	\$	$(1,543,408.38)$	\$	(488,603.57)	\$	(933,787.45)
2040	19	\$	$(2,293.71)$	\$	(678.63)	(38,154.53)	(11,288.55)	\$ (1,571,936.96)	(465,079.43)	\$	(1,612,385.20)	\$	(477,046.60)		(9477,106.37)
		\$	(43	\$	(25,366.39)	(294,	(15	\$ (21,770,169.18)	\$ (10,915,424.82)						16,163,365.52

BRIDGE: P-0294 DECATUR STREET OVER NORTHEAST BRANCH
ALTERNATIVE 1-NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at $\mathbf{7 \%}$		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(15,714.51)	\$	(13,725.66)					\$	$(18,008.22)$	\$	(15,729.08)	\$	(16,974.48)
2025	4	\$	(2,293.71)	\$	(1,872.35)					\$	(672,423.84)	\$	(548,898.15)	\$	(674,717.55)	\$	(550,770.50)	\$	(617,462.14)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(16,349.38)	\$	(12,472.86)	\$	(685,872.31)	\$	(523,248.70)	\$	(704,515.40)	\$	(537,471.43)	\$	(625,952.81)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(699,589.76)	\$	(498,797.83)	\$	(701,883.47)	\$	(500,433.22)	\$	(605,450.85)
202	7	\$	(2,293.71)	\$	(1,528.40)	\$	(17,009.89)	\$	(11,334.41)	\$	(713,581.56)	\$	(475,489.52)	\$	(732,885.16)	\$	(488,352.33)	\$	(613,779.78)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(727,853.19)	\$	$(453,270.38)$	\$	(730,146.90)	\$	(454,698.79)	\$	(593,676.25)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	$(17,697.09)$	\$	(10,299.87)	\$	(742,410.25)	\$	(432,089.52)	\$	(762,401.06)	\$	(443,724.36)	\$	(601,846.43)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(757,258.46)	\$	(411,898.43)	\$	(759,552.17)	\$	(413,146.05)	\$	(582,133.49)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(18,412.05)	\$	(9,359.75)	\$	(772,403.62)	\$	(392,650.84)	\$	(793,109.39)	\$	(403,176.60)	\$	(590,147.87)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(787,851.70)	\$	$(374,302.67)$	\$	(790,145.41)	\$	(375,392.39)	\$	(570,817.86)
2034	13	\$	(2,293.71)	\$	(1,018.44)	\$	(19,155.90)	\$	(8,505.45)	\$	(803,608.73)	\$	(356,811.89)	\$	(825,058.35)	\$	(366,335.77)	\$	(578,679.32)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(819,680.91)	\$	$(340,138.43)$	\$	(821,974.62)	\$	(341,090.24)	\$	(559,724.72)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(19,929.80)	\$	(7,729.12)	\$	(836,074.52)	\$	(324,244.11)	\$	(858,298.04)	\$	(332,862.78)	\$	(567,436.11)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(852,796.01)	\$	$(309,092.52)$	\$	$(855,089.73)$	\$	(309,923.87)	\$	(548,849.56)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(20,734.96)	\$	(7,023.65)	\$	(869,851.93)	\$	(294,648.95)	\$	(892,880.61)	\$	(302,449.55)	\$	(556,413.68)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(887,248.97)	\$	(280,880.30)	\$	(889,542.69	\$	(281,606.43)	\$	(538,187.96)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(21,572.65)	\$	(6,382.57)	\$	$(904,993.95)$	\$	(267,755.05)	\$	(928,860.32)	\$	(274,816.25)	\$	(545,607.54)
TOTAL=		\$	$(43,580.58)$	\$	$(25,366.39)$	\$	(166,576.23)	\$	$(86,833.34)$	\$	$(12,533,499.71)$	\$	$(6,284,217.30)$	\$	$(12,743,656.52)$	\$	$(6,396,417.03)$	\$	(9,317,661.48)

BRIDGE: P-0396 TUCKER ROAD OVER HENSON CREEK

ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		$\begin{gathered} \text { Discounted O\&M } \\ \text { Cost at 7\% } \end{gathered}$		Work Zone Cost	Discounted Work Zone Cost at 7\%	Delay Freight Travel Cost	Discounted Delay Freight Travel Cost at 7%	Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	$(2,293.71)$	\$	(2,293.71)					\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)					\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	$(2,293.71)$	\$	(2,003.42)	(9,422.01)	(8,229.55)			\$	(11,715.72)	\$	$(10,232.97)$		(11,043.19)
2025	4	\$	(2,293.71)	\$	(1,872.35)			(212,014.93)	(173,067.33)	\$	(214,308.64)	\$	(174,939.69)	s	(196,122.76)
2026	5	\$	(2,293.71)	\$	(1,749.86)	(9,802.66)	(7,478.40)	(216,255.22)	(164,980.08)	\$	(228,351.60)	\$	(174,208.34)	s	(202,887.44)
2027	6	\$	(2,293.71)	\$	(1,635.39)			(220,580.33)	(157,270.73)	\$	(222,874.04)	\$	(158,906.11)	\$	(192,253.11)
2028	7	\$	(2,293.71)	\$	(1,528.40)	$(10,198.68)$	(6,795.81)	(224,991.94)	(149,921.63)	\$	(237,484.33)	\$	(158,245.84)	\$	(198,889.39)
2029	8	\$	(2,293.71)	\$	(1,428.41)			(229,491.77)	(142,915.94)	\$	(231,785.49)	\$	(144,344.35)	\$	(188,462.81)
2030	9	\$	(2,293.71)	\$	(1,334.96)	(10,610.71)	(6,175.53)	(234,081.61)	(136,237.63)	\$	(246,986.04)	\$	(143,748.12)		(194,973.06)
2031	10	\$	(2,293.71)	\$	(1,247.63)			(238,763.24)	(129,871.38)	\$	(241,056.96)	\$	(131,119.01)	\$	(184,750.08)
2032	11	\$	(2,293.71)	\$	(1,166.01)	(11,039.38)	(5,611.86)	(243,538.51)	(123,802.63)	\$	(256,871.61)	\$	(130,580.50)	\$	(191,136.60)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$			(248,409.28)	(118,017.46)	\$	(250,702.99)	\$	(119,107.19)	\$	(181,113.18)
2034	13	\$	(2,293.71)	\$	(1,018.44)	(11,485.37)	(5,099.64)	(253,377.46)	(112,502.62)	\$	(267,156.55)	\$	(118,620.70)	\$	(187,378.23)
2035	14	\$	(2,293.71)	\$	(951.81)			(258,445.01)	(107,245.49)	\$	(260,738.73)	\$	(188,197.30)	\$	(177,550.39)
2036	15	\$	(2,293.71)	\$	(889.54)	(11,949.38)	(4,634.18)	(263,613.91)	(102,234.02)	\$	(277,857.01)	\$	(107,757.74)	\$	(183,696.22)
2037	16	\$	(2,293.71)	\$	(831.35)			(268,886.19)	$(97,456.73)$	\$	(271,179.90)	\$	(98,288.08)		(174,060.06)
2038	17	\$	(2,293.71)	\$	(776.96)	(12,432.14)	(4,211.20)	(274,263.91)	$(92,902.68)$	\$	(288,989.77)	\$	(97,890.83	\$	(180,088.87)
2039	18	\$	(2,293.71)	\$	(726.13)			(279,749.19)	(88,561.43)	\$	(282,042.91)	\$	$(89,287.56)$	\$	(170,640.60)
2040	19	\$	(2,293.71)	\$	(678.63)	(12,934.40)	(3,826.82)	(285,344.18)	(84,423.05)	\$	(300,572.29)	\$	(88,928.49)	\$	(176,554.54)
		\$	(43,580.58)	\$	(25,366.39)	(99,874.74)	(52,062.99)	$(3,951,806.68)$	(1,981,410.82)	\$	$(4,095,262.00)$	\$	(2,058,840.20		(2,996,121.1

BRIDGE: P-0484 MCKENDREE ROAD OVER TIMOTHY BRANCH ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		$\begin{aligned} & \text { Discounted O\&M } \\ & \text { Cost at 7\% } \end{aligned}$		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	(2,226.91)
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(6,720.60)	\$	(5,870.03)					\$	(9,014.31)	\$	(7,873.45)	\$	$(8,496.85)$
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(595,699.35)	\$	(486,268.11)	\$	(597,993.06)	\$	(488,140.47)	\$	(547,248.36)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(6,992.11)	\$	(5,334.25)	\$	(607,613.33)	\$	(463,545.30)	\$	(616,899.16)	\$	(470,629.42)	\$	(548,106.91)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(619,765.60)	\$	(441,884.31)	\$	(622,059.32)	\$	(443,519.70)	\$	(536,593.83)
20	7	\$	(2,293.71)	\$	(1,528.40)	\$	(7,274.59)	\$	(4,847.37)	\$	(632,160.91)	\$	(421,235.51)	\$	(641,729.22)	\$	(427,611.28)	\$	(537,438.12)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(644,804.13)	\$	(401,551.61)	\$	$(647,097.85)$	\$	$(402,980.02)$	\$	(526,149.77)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(7,568.4)	\$	(4,404.93)	\$	(657,700.21)	\$	(382,787.51)	\$	(667,562.41)	\$	(388,527.40)	\$	(526,979.93)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(670,854.22)	\$	(364,900.25)	\$	(673,147.93)	\$	(366,147.8)	\$	(515,911.84)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(7,874.25)	\$	(4,002.87)	\$	$(684,271.30)$	\$	(347,848.83)	\$	(694,439.27)	\$	(353,017.71)	\$	(516,728.03)
2033	12	\$	(2,293.71)	\$	$(1,089.73)$					\$	(697,956.73)	\$	(331,594.21)	\$	(700,250.44)	\$	(332,683.94)	\$	(505,875.82)
2034	13	\$	(2,293.71)	\$	$(1,018.44)$	\$	(8,192.37)	\$	(3,637.51)	\$	(711,915.86)	\$	$(316,099.16)$	\$	(722,401.95)	\$	(320,755.11)	\$	(506,678.19)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	$(726,154.18)$	\$	(301,328.17)	\$	(728,447.90)	\$	(302,279.98)	\$	$(496,037.57)$
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(8,523.34)	\$	(3,305.50)	\$	(740,677.26)	\$	(287,247.41)	\$	(751,494.32)	\$	(291,442.45)	\$	(496,826.28)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(755,490.81)	\$	(273,824.64)	\$	(757,784.52)	\$	(274,655.98)	\$	(486,393.05)
2038	17	\$	$(2,293.71)$	\$	(776.96)	\$	(8,867.69)	\$	$(3,003.79)$	\$	(770,600.63)	\$	(261,029.09)	\$	(781,762.03)	\$	(264,809.85)	\$	(487,168.25)
2039	18	\$	(2,293.71)	\$	(726.13)					\$	(786,012.64)	\$	(248,831.47)	\$	(788,306.35)	\$	(249,557.60	\$	(476,938.31)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(9,225.94)	\$	(2,729.62)	\$	(801,732.89)	\$	(237,203.83)	\$	(813,252.55)	\$	(240,612.08)	\$	(477,700.16)
TOTAL=		\$	$(43,580.58)$	\$	$(25,366.39)$	\$	(71,239.38)	\$	(37,135.87)		$(11,103,410.07)$	\$	(5,567,179.42)	\$	$(11,218,230.03)$	+	(5,629,681.68)		(8,201,791.91

BRIDGE: P-0490 GALLAHAN ROAD OVER TINKERS CREEK

ALTERNATIVE 1-NO BUILD

Year	Project Year	O\&M Cost		Discounted O\&M Cost at 7\%		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted DelayFreight Travel Cost at 7\%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	(2,226.91)
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(5,667.47)	\$	(4,950.19)					\$	(7,961.18)	\$	(6,953.61)	\$	$(7,504.18)$
2025	4	\$	(2,293.71)	\$	$(1,872.35)$					\$	(470,138.92)	\$	(383,773.40)	\$	(472,432.63)	\$	(385,645.75)	\$	(432,342.78)
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(5,896.43)	\$	(4,498.36)	\$	(479,541.69)	\$	(365,840.06)	\$	(487,731.84)	\$	(372,088.29)	\$	(433,343.42)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	(489, 132.53)	\$	(348,744.73)	\$	(491,426.24)	\$	(350,380.12)	\$	(423,908.59)
2028	7	\$	(2,293.71)	\$	(1,528.40)	\$	(6,134.65)	\$	$(4,087.78)$	\$	(498,915.18)	\$	(332,448.25)	\$	(507,343.54)	\$	(338,064.42)	\$	(424,892.23)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	(508,893.48)	\$	(316,913.28)	\$	(511,187.20)	\$	(318,341.69)	\$	(415,641.97)
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(6,382.49)	\$	(3,714.67)	\$	(519,071.35)	\$	(302,104.25)	\$	(527,747.55)	\$	(307,153.88)	\$	(416,608.79)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(529,452.78)	\$	(287,987.23)	\$	(531,746.49)	\$	(289,234.8	\$	(407,539.41)
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	$(6,640.34)$	\$	(3,375.61)	\$	(540,041.83)	\$	(274,529.88)	\$	(548,975.89)	\$	(279,071.51)	\$	(408,489.62)
2033	12	\$	(2,293.71)	\$	(1,089.73)					\$	(550,842.67)	\$	(261,701.38)	\$	(553,136.38)	\$	(262,791.11)	\$	(399,597.49)
2034	13	\$	$(2,293.71)$	\$	(1,018.44)	\$	(6,908.61)	\$	(3,067.51)	\$	(561,859.52)	\$	(249,472.35)	\$	(571,061.85)	\$	(253,558.29)	\$	(400,531.29)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	(573,096.71)	\$	(237,814.76)	\$	(575,390.43)	\$	(238,766.5	\$	(391,812.88)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(7,187.72)	\$	(2,787.52)	\$	(584,558.65)	\$	(226,701.92)	\$	(594,040.08)	\$	(230,378.99)	\$	(392,730.48)
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(596,249.82)	\$	(216,108.37)	\$	(598,543.54)	\$	(216,939.72)	\$	(384,182.32)
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(7,478.10)	\$	(2,533.09)	\$	(608,174.82)	\$	(206,009.85)	\$	(617,946.64)	\$	(209,319.91)	\$	(385,083.91)
2039	18	\$	$(2,293.71)$	\$	(726.13)					\$	(620,338.31)	\$	(196,383.22)	\$	(622,632.03)	\$	(197,109.35)	\$	(376,702.62)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(7,780.22)	\$	$(2,301.89)$	\$	(632,745.08)	\$	(187,206.44)	\$	(642,819.01)	\$	(190,186.95)	\$	(377,588.42)
L=		\$	(43,580.58)	\$	(25,366.39)	\$	$(60,076.04)$	\$	(31,316.61)	\$	$(8,763,053.35)$	\$	(4,393,739.40)	\$	$(8,866,709.96)$	\$	$(4,450,422.39)$		(6,483,021.04)

BRIDGE: P-0579 DERRICK PLACE OVER BUTLER BRANCH
ALTERNATIVE 1 - NO BUILD

Year	Project Year	O\&M Cost		Discounted O\&M Cost at 7\%		Work Zone Cost		Discounted Work Zone Cost at 7\%		Delay Freight Travel Cost		Discounted Delay Freight Travel Cost at 7%		Total Cost Alternative 1		Total Cost Alt 1 Discounted at 7\%		Total Cost Alt 1 Discounted at 3\%	
2022	1	\$	(2,293.71)	\$	(2,293.71)									\$	(2,293.71)	\$	(2,293.71)	\$	(2,293.71)
2023	2	\$	(2,293.71)	\$	(2,143.66)									\$	(2,293.71)	\$	(2,143.66)	\$	$(2,226.91)$
2024	3	\$	(2,293.71)	\$	(2,003.42)	\$	(333.31)	\$	(291.13)					\$	(2,627.03)	\$	$(2,294.55)$	\$	(2,476.23)
2025	4	\$	(2,293.71)	\$	(1,872.35)					\$	(1,673.31)	\$	(1,365.92)	\$	(3,967.03)	\$	(3,238.28)	\$	$(3,630.39)$
2026	5	\$	(2,293.71)	\$	(1,749.86)	\$	(346.78)	\$	(264.56)	\$	$(1,706.78)$	\$	(1,302.09)	\$	(4,347.27)	\$	($3,316.51$)	\$	(3,862.50)
2027	6	\$	(2,293.71)	\$	(1,635.39)					\$	$(1,740.91)$	\$	(1,241.25)	\$	(4,034.63)	\$	(2,876.63)	\$	(3,480.31)
2028	7	\$	$(2,293.71)$	\$	(1,528.40)	\$	(360.79)	\$	(240.41)	\$	$(1,775.73)$	\$	(1,183.25)	\$	(4,430.24)	\$	(2,952.05)	\$	(3,710.25)
2029	8	\$	(2,293.71)	\$	(1,428.41)					\$	$(1,811.25)$	\$	$(1,127.95)$	\$	(4,104.96)	\$	(2,556.36)	\$	$(3,337.71)$
2030	9	\$	(2,293.71)	\$	(1,334.96)	\$	(375.37)	\$	(218.47)	\$	(1,847.47)	\$	(1,075.25)	\$	(4,516.55)	\$	(2,628.68)	\$	(3,565.41)
2031	10	\$	(2,293.71)	\$	(1,247.63)					\$	(1,884.42)	\$	(1,025.00)	\$	$(4,178.14)$	\$	(2,272.63)	\$	$(3,202.19)$
2032	11	\$	(2,293.71)	\$	(1,166.01)	\$	(390.53)	\$	(198.53)	\$	(1,922.11)	\$	(977.10)	\$	(4,606.36)	\$	$(2,341.64)$	\$	$(3,427.56)$
2033	12	\$	(2,293.71)	\$	(1,089.73)					\$	$(1,960.55)$	\$	(931.44)	\$	(4,254.27)	\$	(2,021.17)	\$	$(3,073.37)$
2034	13	\$	(2,293.71)	\$	(1,018.44)	\$	(406.31)	\$	(180.41)	\$	(1,999.76)	\$	(887.92)	\$	(4,699.79)	\$	$(2,086.76)$	\$	(3,296.34)
2035	14	\$	(2,293.71)	\$	(951.81)					\$	$(2,039.76)$	\$	(846.43)	\$	(4,333.47)	\$	(1,798.24)	\$	(2,950.88)
2036	15	\$	(2,293.71)	\$	(889.54)	\$	(422.72)	\$	(163.94)	\$	$(2,080.55)$	\$	(806.87)	\$	(4,796.99)	\$	(1,860.36)	\$	$(3,171.38)$
2037	16	\$	(2,293.71)	\$	(831.35)					\$	(2,122.17)	\$	(769.17)	\$	(4,415.88)	\$	(1,600.52)	\$	$(2,834.39)$
2038	17	\$	(2,293.71)	\$	(776.96)	\$	(439.80)	\$	(148.98)	\$	(2,164.61)	\$	(733.23)	\$	(4,898.12)	\$	(1,659.16)	\$	$(3,052.35)$
2039	18	\$	(2,293.71)	\$	(726.13)					\$	$(2,207.90)$	\$	(698.96)	\$	(4,501.62)	\$	(1,425.10)	\$	(2,723.55)
2040	19	\$	$(2,293.71)$	\$	(678.63)	\$	(457.57)	\$	(135.38)	\$	(2,252.06)	\$	(666.30)	\$	$(5,003.34)$	\$	(1,480.31)	\$	$(2,938.94)$
TOTAL=		\$	$(43,580.58)$	\$	$(25,366.39)$	\$	$(3,533.19)$	\$	$(1,841.79)$	\$	(31,189.35)	\$	(15,638.14)	\$	(78,303.12)	\$	$(42,846.32)$	\$	(59,254.37)

BRIDGE: P-0596 LEELAND ROAD OVER COLLINGTON BRANCH

OPERATING AND MAINTENANCE COST P-0117 CHERRYWOOD LANE OVER I-95/-495

Total P.G. Co. FY 2022 Operating Budget for DPW\&T is	$43,351,205.00$	
Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$	$\$$	$433,512.05$
Share for Bridge Maintenance NBI Bridges $=1 / 3$	$\$$	$144,504.02$
Assumed evenly distributed among 63 assests with poor or fair condition elements $=$	$\$$	$2,23.71$
O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future	$\$$	$(2,293.71)$
Inflation was assumed at 3% per year		

LOSS OF SERVICE P-0117 CHERRYWOOD LANE OVER I-95/-495

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)	
Truck travel cost. Vehicle occupancy $=1$	9620	5\%	0.05	32	481	24.05	\$	(280,904.00)
Detour Length $=2 \mathrm{mi}$.	Analysis Period $=365$ DaysDuration $=$ Each Year after the Third Year							
Speed $=\quad 40 \mathrm{MPH}$								
ADT Growth = Assume 2%								

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0169 CONTEE ROAD OVER CSX RAILROAD

| Total P.G. Co. FY 2022 Operating Budget for DPW\&T is | $\$ 43,351,205.00$ |
| :--- | :--- | Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$ Share for Bridge Maintenance NBI Bridges $=1 / 3$ | | Assumed evenly distributed among 63 assests with poor or fair condition elements $=$ | $\$ 84,504.02$ |
| :--- | :--- | :--- | | O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future | $\$ \quad(2,293.71)$ |
| :--- | :--- |
| Inflation was assumed at 3% per year | |

LOSS OF SERVICE P-0169 CONTEE ROAD OVER CSX RAILROAD

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)	
Truck travel cost. Vehicle occupancy $=1$	22202	5\%	0.15	32	1110.1	166.515	\$	(1,944,895.20)
Detour Length $=6 \mathrm{mi}$.	Analysis Period = 365 Days							
Speed $=40 \mathrm{MPH}$	Duration $=$ Each Year after the Third Year							
ADT Growth $=$ Assume 2%								

CONSTRUCTION ZONE COST P-0169 CONTEE ROAD OVER CSX RAILROAD												
Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	$\begin{aligned} & \text { Number of } \\ & \text { Business Car } \end{aligned}$ Users	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost		
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		22202	88.2\%	0.02225	16.200	32702.2139			727.748	$$		
Business travel. 11.8% of total trips.			11.8\%	0.02225	29.400		4375.126		97.363	\$ 5,724.95		
Truck travel cost. Vehicle occupancy $=1$		5% of ADT	5.0\%	0.02225	$\begin{aligned} & \hline 32.000 \\ & \hline \text { 2 Days } \end{aligned}$			1110.100	24.704	\$ 1,581.05		
	Work Zone Length $=$	0.2225 mi .	Maintenance Duration $=$					TOTAL= ${ }^{\text {P }}$ \$ ($\left.30,885.04\right)$				
	Speed Reduction $=$	10 MPH	Maintenance Frequency =		Every 2 Years							

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0185 METZEROTT ROAD OVER PAINT BRANCH

LOSS OF SERVICE P-0185 METZEROTT ROAD OVER PAINT BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	14850	10\%	0.025	32	1485	37.125	(433,620.00

$\begin{array}{rcrl}\text { Detour Length } & 1 \mathrm{mi} . & \text { Analysis Period }=3 \text { 365 Days } \\ \text { Speed } & = & 40 \mathrm{MPH} & \text { Duration }=\text { Each Year atter the Third Year }\end{array}$
MT Gowis $\quad 40 \mathrm{MPH}$
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0185 METZEROTT ROAD OVER PAINT BRANCH

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0190 SELLMAN ROAD OVER LITTLE PAINT BRANCH Total P.G. Co. FY 2022 Operating Budget for DPW\&T is $\quad \$ 43,351,205.00$ Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$ Share for Bridge Maintenance NBI Bridges $=1 / 3$ Assumed evenly distributed among 63 assests with poor or fair condition elements = O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

LOSS OF SERVICE P-0190 SELLMAN ROAD OVER LITTLE PAINT BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	$\begin{gathered} \hline \text { Value of Travel } \\ (\$ / \mathrm{hr}) \end{gathered}$	Number of Trucks	Total Travel Delay Time veh-hr/day		eight Travel Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	5820	10\%	0.05	32	582	29.1	\$	(339,8800)

$\begin{array}{lll}\text { Detour Length }= & 2 \mathrm{mi} . & \text { Analysis Period }= \\ 365 \text { Days }\end{array}$ \qquad
365 Days
Duration $=$ Each Year after the Third Year
Speed $=\quad 40 \mathrm{MPH}$

ALTERNATIVE 1 - NO BUILD

LOSS OF SERVICE P-0198031 CHERRY LANE (EAST) OVER CSX RAILROAD

Loss of Service - Freight Traffic	ADT	$\begin{gathered} \text { Volume } \\ \text { Distribution } \\ \hline \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { Delay Time } \\ \text { hr/day } \end{array} \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Value of Travel } \\ \text { (\$/hr) } \end{array} \\ \hline \end{array}$	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)	
Truck travel cost. Vehicle occupancy $=1$	10861	10\%	0.15	32	1086.1	162.915	\$	(1,902,847.20)

$$
\text { alysis Period }=365 \text { Days }
$$

$\quad 40 \mathrm{MPH}$

$$
\begin{aligned}
& \text { Duration }=\text { Each Year after the Third Year }
\end{aligned}
$$

CONSTRUCTION ZONE COST P-0198031 CHERRY LANE (EAST) OVER CSX RAILROAD

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0198041 CHERRY LANE (WEST) OVER CSX RAILROAD Total P.G. Co. FY 2022 Operating Budget for DPW\&T is $\quad \$ 43,351,205.00$ Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$ Share for Bridge Maintenance NBI Bridges $=1 / 3$ Assumed evenly distributed among 63 assests with poor or fair condition elements = O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	10860	10\%	0.15	32	1086	162.9	\$ (1,902,672.00

$\begin{array}{lllll}\text { Detour Length }= & 6 \mathrm{mi} . & \text { Analysis Period }= & 365 \text { Days }\end{array}$ 0.15

Speed $=\quad 40 \mathrm{MPH} \quad$ Analysis \quad Duration $=$ Each Year after the Third Year
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0198041 CHERRY LANE (WEST) OVER CSX RAI									
Construction Zone Cost	ADT	$\begin{aligned} & \text { Volume } \\ & \text { Distribution } \end{aligned}$	Work Zone Delay Time hr/day	$\begin{gathered} \text { Value of } \\ \text { Travel (\$/hr) } \end{gathered}$	$\begin{gathered} \hline \text { Number of } \\ \text { Personal Car } \\ \text { Users } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Number of } \\ \text { Business Car } \end{gathered}$ Users	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.	10860	88.2\%	0.02269	16.200	15996.1284			362.942	11,759.34
Business travel. 11.8% of total trips.		11.8\%	0.02269	29.400		2140.072		48.557	2,855.15
Truck travel cost. Vehicle occupancy $=1$	10% of ADT	10.0\%	0.02269	32.000			1086.000	24.641	1,577.00
Work Zone Length =	0.2269 mi .	Mainter	ce Duration =	2 Days				TOTAL=	\$ (16,191.49)

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH

LOSS OF SERVICE P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)	
Truck travel cost. Vehicle occupancy = 1	22445	10\%	0.075	32	2244.5	168.3375		

Detour Length $=3 \mathrm{mi}$
Speed $=\quad 40 \mathrm{MPH}$
DT Growth $=40 \mathrm{MPH}$

CONSTRUCTION ZONE COST P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH

CONSTRUCTION ZONE COST P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH										
Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	$\begin{gathered} \hline \text { Number of } \\ \text { Business Car } \\ \text { Users } \end{gathered}$	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		22445	88.2\%	0.02027	16.200	33060.1383			669.969	\$ 21,706.99
Business travel. 11.8% of total trips.			11.8\%	0.02027	29.400		4423.012		89.633	5,270.42
Truck travel cost. Vehicle occupancy $=1$		10\% of ADT	10.0\%	0.02027	32.000			2244.500	45.485	2,911.05
	Work Zone Length =	0.2027 mi .	Maintenance Duration =						TOTAL= ${ }^{\text {\% }}$ \$ (29,888.46)	
	Speed Reduction =	10 MPH	Maintenance Frequency $=$		Every 2 Years					

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0205 WALKER MILL ROAD OVER SOUTHWEST BRANCH Total P.G. Co. FY 2022 Operating Budget for DPW \&T is Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$ Share for Bridge Maintenance NBI Bridges $=1 / 3$ Assumed evenly distributed among 63 assests with poor or fair condition elements = $\mathrm{O} \& \mathrm{M}$ expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

LOSS OF SERVICE P-0205 WALKER MILL ROAD OVER SOUTHWEST BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	39421	5\%	0.075	32	1971.05	147.82875	\$ (1,726,639.8

$\begin{array}{lllll}\text { Detour Length }= & 3 \mathrm{mi} . & \text { Analysis Period }= & 365 \text { Days }\end{array}$ 0.075

Duration = Each Year after the Third Year
ADT Growth $=$ Assume 2

ALTERNATIVE 1-NO BULLD

OPERATING AND MAINTENANCE COST P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH		
Total P.G. Co. FY 2022 Operating Budget for DPW\&T is	$43,351,205.00$	
Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$	$\$$	$433,512.05$
Share for Bridge Maintenance NBI Bridges $=1 / 3$	$\$$	$144,504.02$
Assumed evenly distributed among 63 assests with poor or fair condition elements $=$	$\$$	$2,23.71$
O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future	$\$$	$(2,293.71)$
Inflation was assumed at 3% per year		

LOSS OF SERVICE P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH

$\begin{array}{rcrl}\text { Detour Length }= & 1 \mathrm{mi.} & \text { Analysis Period }=\quad 365 \text { Days } \\ \text { Speed } & = & 40 \mathrm{MPH} & \text { Duration }=\text { Each Year after the Third Year }\end{array}$
DT Gowth $=40 \mathrm{MPH}$

CONSTRUCTION ZONE COST P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH

Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	Number of Business Car Users	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		5000	88.2\%	0.01936	16.200	7364.7000			142.552	\$ 4,618.67
Business travel. 11.8% of total trips.			11.8\%	0.01936	29.400		985.300		19.072	\$ 1,121.41
Truck travel cost. Vehicle occupancy $=1$		10\% of ADT	10.0\%	0.01936	32.000			500.000	9.678	619.39
	Work Zone Length =	0.1936 mi .	Maintenance Duration =		$\frac{2 \text { Days }}{\text { Every } 2 \text { Years }^{2}}$				TOTAL=	\$ (6,359.47)
	Speed Reduction $=$	10 MPH	Maintenance Frequency $=$							

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0273 CARTER AVENUE OVER AMTRAK RAILROAD

LOSS OF SERVICE P-0273 CARTER AVENUE OVER AMTRAK RAILROAD

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	$\begin{gathered} \hline \text { Value of Travel } \\ (\$ / \mathrm{hr}) \end{gathered}$	Number of Trucks	Total Travel Delay Time veh-hr/day		eight Travel Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	15218	10\%	0.05	32	1521.8	76.09	\$	(88873120)

Detour Length $=\quad 2 \mathrm{mi} . \quad$ Analysis Period $=\quad$ 365 Days \qquad
Duration = Each Year after the Third Year
ADT Growth $=$ Assume 20

CONSTRUCTION ZONE COST P-0273 CARTER AVENUE OVER AMTRAK RAILROAD

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0283 LOTTSFORD ROAD OVER WESTERN BRANCH

LOSS OF SERVICE P-0283 LOTTSFORD ROAD OVER WESTERN BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Trave Delay Cost (\$/year)
Truck travel cost Vehicle occupancy $=1$	18846	10\%	0.05	32	1884.6	94.23	

Speed $=\quad 40 \mathrm{MPH}$
DT Growth $=40 \mathrm{MPH}$

CONSTRUCTION ZONE COST P-0283 LOTTSFORD ROAD OVER WESTERN BRANCH

CONSTRUCTION ZONE COST P-0283 LOTTSFORD ROAD OVER WESTERN BRANCH											
Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	$\begin{gathered} \hline \text { Number of } \\ \text { Business Car } \end{gathered}$ Users	Number of Trucks	$\begin{array}{\|c\|} \hline \text { Total Work } \\ \text { Zone Delay } \\ \text { Time veh-hr/day } \end{array}$	Total Work Zone Travel Delay Cost	
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		18846	88.2\%	0.02157	16.200	27759.0272			598.817	\$ 19,401.67	
Business travel. 11.8% of total trips.			11.8\%	0.02157	29.400		3713.793		80.114	$\begin{array}{\|l\|} \hline \$ \\ \hline \end{array}$	
Truck travel cost. Vehicle occupancy $=1$		10\% of ADT	10.0\%	0.02157	32.000			1884.600	40.655		
	Work Zone Length =	0.2157 mi .	Maintenance Duration =		2 Days				TOTAL $=\$ \quad \$ \quad(26,714.25)$		
	Speed Reduction $=$	10 MPH	Maintenance Frequency =		Every 2 Years						

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0294 DECATUR STREET OVER NORTHEAST BRANCH Total P.G. Co. FY 2022 Operating Budget for DPW\&T is $\quad \$ 43,351,205.00$ Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$ Share for Bridge Maintenance NBI Bridges $=1 / 3$ Assumed evenly distributed among 63 assests with poor or fair condition elements = O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

LOSS OF SERVICE P-0294 DECATUR STREET OVER NORTHEAST BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	8680	25\%	0.02	32	2170	54.25	(633

Detour Length $=1 \mathrm{mi} . \quad$ Analysis Period $=365$ Days
Speed $=\quad 40 \mathrm{MPH}$
Duration $=$ Each Year after the Third Year
ADT Growth $=$ Assume 2%

Period $=365$ Days
Duration $=$ Each Year after the Third Year

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0396 TUCKER ROAD OVER HENSON CREEK

LOSS OF SERVICE P-0396 TUCKER ROAD OVER HENSON CREEK

$\begin{array}{rcrl}\text { Detour Length }= & 2 \mathrm{mi.} & \text { Analysis Period }=\quad 365 \text { Days } \\ \text { Speed }= & 40 \mathrm{MPH} & \text { Duration }=\text { Each Year atter the Third Year }\end{array}$
DT $\quad 40 \mathrm{MPH}$
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0396 TUCKER ROAD OVER HENSON CREEK

CONSTRUCTION ZONE COST P-0396 TUCKER ROAD OVER HENSON CREEK										
Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	$\begin{gathered} \hline \text { Number of } \\ \text { Business Car } \\ \text { Users } \end{gathered}$	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		6842	88.2\%	0.02117	16.200	10077.8555			213.391	6,913.87
Business travel. 11.8% of total trips.			11.8\%	0.02117	29.400		1348.285		28.549	\$ 1,678.68
Truck travel cost. Vehicle occupancy $=1$		5\% of ADT	5.0\%	0.02117	32.000			342.100	7.244	463.60
	Work Zone Length =	0.2117 mi .	Maintenance Duration =		$\text { Every } 2 \text { Years }$				TOTAL= $(9,056.14)$	
	Speed Reduction =	10 MPH	Maintenance Frequency $=$							

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0484 MCKENDREE ROAD OVER TIMOTHY BRANCH

Total P.G. Co. FY 2022 Operating Budget for DPW\&T is	$\$$	$43,351,205.00$
Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$	$\$$	$433,512.05$
Share for Bridge Maintenance NBI Bridges $=1 / 3$	$\$$	$144,504.02$
Assumed evenly distributed among 63 assests with poor or fair condition elements $=$	$\$$	$2,293.71$
O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future	$\$$	$(2,293.71)$
Inflation was assumed at 3% per year		

LOSS OF SERVICE P-0484 MCKENDREE ROAD OVER TIMOTHY BRANCH

Detour Length $=4 \mathrm{mi} . \quad$ Analysis Period $=365$ Days
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0484 MCKENDREE ROAD OVER TIMOTHY BRANCH

Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	Number of Business Car Users	Number of Trucks	$\begin{array}{\|c\|} \hline \text { Total Work } \\ \text { Zone Delay } \\ \text { Time veh-hr/day } \\ \hline \end{array}$	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		4806	88.2\%	0.02045	16.200	7078.9496			144.797	\$ 4,691.41
Business travel. 11.8% of total trips.			11.8\%	0.02045	29.400		947.070		19.372	1,139.07
Truck travel cost. Vehicle occupancy $=1$		10\% of ADT	10.0\%	0.02045	32.000			480.600	9.830	\$ 629.15
	Work Zone Length =	0.2045 mi .	Maintenance Duration =		2 Days	TOTAL=				
	Speed Reduction $=$	10 MPH	Maintenance Frequency $=$		Every 2 Years					

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0490 GALLAHAN ROAD OVER TINKERS CREEK

LOSS OF SERVICE P-0490 GALLAHAN ROAD OVER TINKERS CREEK

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day		reight Travel Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	3793	10\%	0.1	32	379.3	37.93	\$	(443,022.40)

$\begin{array}{rcrl}\text { Detour Length }= & 4 \mathrm{mi} . & \text { Analysis Period }=4365 \text { Days } \\ \text { Speed }= & 40 \mathrm{MPH} & \text { Duration }=\text { Each Year after the Third Year }\end{array}$
DT Growth $\quad 40 \mathrm{MPH}$
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0490 GALLAHAN ROAD OVER TINKERS CREEK

CONSTRUCTION ZONE COST P-0490 GALLAHAN ROAD OVER TINKERS CREEK										
Construction Zone Cost		ADT	Volume Distribution	Work Zone Delay Time hr/day	Value of Travel (\$/hr)	Number of Personal Car Users	$\begin{gathered} \hline \text { Number of } \\ \text { Business Car } \\ \text { Users } \end{gathered}$	Number of Trucks	Total Work Zone Delay Time veh-hr/day	Total Work Zone Travel Delay Cost
Personal travel. Vehicle occupancy all traves $=1.67 .88 .2 \%$ of total trips.		3793	88.2\%	0.02186	16.200	5586.8614			122.107	3,956.26
Business travel. 11.8% of total trips.			11.8\%	0.02186	29.400		747.449		16.336	960.57
Truck travel cost. Vehicle occupancy $=1$		10\% of ADT	10.0\%	0.02186	32.000			379.300	8.290	530.56
	Work Zone Length $=$	0.2186 mi .	Maintenance Duration =		$\frac{2 \text { Days }}{\text { Every } 2 \text { Years }}$				TOTAL= ${ }^{\text {P }}$ \$ $\quad(5,447.39)$	
	Speed Reduction $=$	10 MPH	Maintenance Frequency $=$							

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0579 DERRICK PLACE OVER BUTLER BRANCH
Total P.G. Co. FY 2022 Operating Budget for DPW\&T is
Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$
Share for Bridge Maintenance NBI Bridges $=1 / 3$
Assumed evenly distributed among 63 assests with poor or fair condition elements = O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

LOSS OF SERVICE P-0579 DERRICK PLACE OVER BUTLER BRANCH

Loss of Service - Freight Traffic	ADT	Volume Distribution	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day	Total Freight Travel Delay Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	270	2%	0.025	32	5.4	0.135	(1,576.

$\begin{array}{rcc}\text { Detour Length }= & 1 \mathrm{mi.} & \text { Analysis Period }=365 \text { Days } \\ \text { Speed }= & 40 \mathrm{MPH} & \\ \text { Duration }=\text { Each Year after the Third Year }\end{array}$
ADT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0579 DERRICK PLACE OVER BUTLER BRANCH

ALTERNATIVE 1 - NO BUILD

OPERATING AND MAINTENANCE COST P-0596 LEELAND ROAD OVER COLLINGTON BRANCH | Total P.G. Co. FY 2022 Operating Budget for DPW\&T is | 43,351,205.00 |
| :--- | :--- | Share for Roadway and Bridge Maintenance 1% of Operating Budget $=$

 Assumed evenly distributed among 63 assests with poor or fair condition elements $=$ O\&M expenditure trend $=0 \%$ budget is expected to remain constant in the future Inflation was assumed at 3% per year

LOSS OF SERVICE P-0596 LEELAND ROAD OVER COLLINGTON BRANCH

Loss of Service - Freight Traffic	ADT	$\begin{gathered} \text { Volume } \\ \text { Distribution } \end{gathered}$	Delay Time hr/day	Value of Travel (\$/hr)	Number of Trucks	Total Travel Delay Time veh-hr/day		Feight Travel Cost (\$/year)
Truck travel cost. Vehicle occupancy $=1$	3568	10\%	0.075	32	356.8	26.76	\$	(312,556.80)

Detour Lenth $=\frac{3 \mathrm{mi}}{3}$
Speed $=40 \mathrm{MPH}$
DT Growth $=$ Assume 2%

CONSTRUCTION ZONE COST P-0596 LEELAND ROAD OVER COLLINGTON BRANCH

ALTERNATIVE 1 - NO BULLD

SIA Data										
Bridge	Item 19 Bypass Detour Length (mi)	$\left\|\begin{array}{c} \text { Item } 29 \\ \text { ADT }(\mathrm{vpd}) \end{array}\right\|$	$\begin{aligned} & \text { Item } \\ & (\%) \end{aligned}$	$\underset{(\mathrm{tpd})}{\mathrm{ADTT}}$	$\begin{array}{\|c} \text { Item } 27 \text { Year } \\ \text { Built } \end{array}$	Item 106 Year Reconstr.	Age	Item 49 Bridge Length (ft)	Bridge Construction Zone Length	Road Name and Crossing
P-0117	2	9620	5	481	1990	0	32	443	0.2733	CHERRYWOOD LANE OVER I-95/I-495
P-0169	6	22202	5	1110.1	1997	0	25	175	0.2225	CONTEE ROAD OVER CSX RAILROAD
P-0185	1	14850	10	1485	1900	1970	52	62	0.2011	METZEROTT ROAD OVER PAINT BRANCH
P-0190	2	5820	10	582	1985	0	37	87	0.2059	SELLMAN ROAD OVER LITTLE PAINT BRANCH
P-0198031	6	10861	10	1086.1	1990	0	32	198	0.2269	CHERRY LANE (EAST) OVER CSX RAILROAD
P-0198041	6	10860	10	1086	1979	0	43	198	0.2269	CHERRY LANE (WEST) OVER CSX RAILROAD
P-0204	3	22445	10	2244.5	1980	0	42	70	0.2027	RITCHIE ROAD OVER SOUTHWEST BRANCH
P-0205	3	39421	5	1971.05	1969	0	53	96	0.2076	WALKER MILL ROAD OVER SOUTHWEST BRANCH
P-0220	1	5000	10	500	1957	0	65	22	0.1936	RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH
P-0273	2	15218	10	1521.8	1979	0	43	212	0.2295	CARTER AVENUE OVER AMTRAK RAILROAD
P-0283	2	18846	10	1884.6	1989	0	33	139	0.2157	LOTTSFORD ROAD OVER WESTERN BRANCH
P-0294	1	8680	25	2170	1955	1994	28	220	0.2311	DECATUR STREET OVER NORTHEAST BRANCH
P-0396	2	6842	5	342.1	1979	0	43	118	0.2117	TUCKER ROAD OVER HENSON CREEK
P-0484	4	4806	10	480.6	1986	0	36	80	0.2045	MCKENDREE ROAD OVER TIMOTHY BRANCH
P-0490	4	3793	10	379.3	1989	0	33	154	0.2186	GALLAHAN ROAD OVER TINKERS CREEK
P-0579	1	270	2	5.4	1974	0	48	34	0.1958	DERRICK PLACE OVER BUTLER BRANCH
P-0596	3	3568	10	356.8	1985	0	37	66	0.2019	LEELAND ROAD OVER COLLINGTON BRANCH

LDGE: P-0117 Cherrywood lane over L-95/-495

alternative 2: bridge preservation

Year	Project Y	овм Cost				$\begin{array}{\|c\|} \hline \text { Professional } \\ \text { Serrics } \\ \text { Design Final } \end{array}$		Professional Services Cost Construction	\square	truction Cast	$\begin{gathered} \text { Discounted } \\ \text { Constrution cost } \\ \text { ait } 7 \% \text { cose } \end{gathered}$	${ }_{\text {cost }}$ Coction Zone	$\begin{gathered} \text { Discounted } \\ \text { Construction Zone } \\ \text { Cost at } 7 \% \end{gathered}$	${ }_{\text {Amorticed Brige }}$		Reidual Value	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{array}$	${ }_{\text {a }}^{\text {Totat Cost }}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{gathered}$			${ }_{\text {Discounted at } 7 \text { \% }}^{\text {S }}$	
${ }^{2022}$	1	s (2,293.71]	${ }^{5}$	s (7,43.21)	s (7,432.21)													(9,72692)	(19726929	(9,726,92]				
${ }^{2023} 2024$	$\stackrel{2}{3}$	${ }_{\text {s }}^{\text {s }}$	${ }^{\text {s }}$					(3.088.24	(2.697.38)		${ }_{\text {s }}^{\text {s }}$	(359.070.14	22.76					${ }^{(660,2457509}$	(67.574.94)	$\frac{(1723.25)}{(62,34.89)}$				
2025	4	$\frac{(2,29371)}{(2,4129}$	${ }^{\text {s }}$							${ }^{5}(382.367 .35)^{5}$	s ${ }^{(312.125 .66}$							(384,661.06)	${ }^{(1312,988.017}$	${ }^{(332.019 .360}$		S ${ }^{\text {S }}$	${ }^{5}$ (595,20678)	
- 2026	$\frac{5}{6}$		${ }^{\text {s }}$											${ }_{293,3,33,3,33}^{29}$				290.19194					${ }^{\text {s }}$	${ }^{(30,164.72)}$
2028	7	(3,41/39)	s (2.093.24)											20233338	195,460,39			290,19194	193,367.14	243,033,18			${ }^{131,287,00}$	(39,322.69)
$\stackrel{2029}{2030}$	8		${ }^{\text {s }}$																${ }_{\text {L }}^{180,71696}$	${ }^{233,925200}$			$\mathrm{s}^{\text {s }}$	
2031	10	(3,141.39)	${ }^{\text {s }}$ (1,708,71)											293,333,33	159,53, ${ }^{\text {a }}$			290,19194	157,845.19	222,40796			s (26,004,41)	S (36.690.89]
2032 2033 023	${ }_{12}^{11}$		${ }^{\text {s }}$											${ }_{\text {293, }}^{2933,333}$					\|l4,518.87	${ }^{215,930.06}$ 20960083			${ }_{\text {s }}^{\text {s }}$	
2034	13	(3,141.39)	(1,34, 2)											$293,333.33$	130,243.51			290,19194	128.888,99	203,53, ${ }^{\text {a }}$ /9		s (89,199.04) s	S (3, 6 ,65 44)	(62.56241)
2035 2036 206	$\stackrel{14}{15}$		${ }^{\text {s }}$											${ }_{2}^{293,333333}$				290.19.94					${ }_{5}^{\text {s }}$	${ }^{(51.989 .29)}$
2037	16	(3,141.39)	(1,188.88)											293333.33	106,317.50			290,191.94	105,178.91	188,263,16		(90,16157)	(32,688.70)	(67, 87128)
	17	(3,141.39)	(1,064,10)											29,3,33,38	${ }^{99.362 .15}$				98.29.05,				$\mathrm{s}^{\text {s }}$ (40,747.35) ${ }^{\text {a }}$	(174,97.00)
2039 2040 20	$\frac{18}{19}$		$)^{8}$											${ }_{\text {2 }}^{293,33,3,33}$		s ${ }^{(0.01)}$	s (0.00)	290,1999	${ }^{5} 5$			${ }^{(1036,774.559) \mathrm{s}}$		
	Total=	(56,299.73)	s 31.668 .67$)$	s (7,433211)	s (7,433.21)	\$ $227,994.12)$	s 22.977 .8 .81$)$	\% $(3,088.24)$	$5{ }^{(2,697.38)}$	S (721,477.83)	s (610,388.27)	s ${ }^{(350,070.14)}$	s ${ }^{(31,2,25.76)}$	s 4,400,000.00	s 2,18,066.12	s ${ }^{(0.01)}$	s $\quad(0.00)$ s	3,224,870.73	s 1,188, 27.01	2,114,989.69		${ }_{5}(2,556,283.09)$ s	s (1,717,27.11)	s (2,141, 13, 71)

INITIAL INVESTMENT FOR ALTERNATIVE $2=$	$\$$	$(816,059.12)$

Benefit to Cost Ratio $=$

Year	Project Jar	osm Cost		$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Professional } \\ \text { Services Cost Final } \\ \text { Design } \end{array}$		Professional Services Cost Construction		Construction Cost		$\begin{aligned} & \text { ruction Zone } \\ & \text { Cost } \end{aligned}$	$\begin{array}{\|c} \text { Discounted } \\ \text { Construction Zone } \\ \text { Cost at } 7 \% \end{array}$	${ }_{\text {Amorticed }}^{\text {Rrige }}$	$\begin{gathered} \text { Discounted } \\ \text { Amortized Bridge } \\ \text { Replacement } \\ \text { Value at 7\% } \end{gathered}$	Residal Value	$\begin{gathered} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{gathered}$	$\pm \begin{gathered}\text { Totat Cost } \\ \text { Alterative2 } \\ \text { a }\end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$			${ }_{\text {counted Net }}^{\substack{\text { cenfis }}}$		
2022 2023	$\frac{1}{2}$	${ }_{\text {s }}{ }_{\text {s }}$		$5{ }^{(0,433.21)}$	(7,433.21)																	${ }_{\text {c }}^{(12,020.64)}$		$\frac{(12.2020 .64)}{(7,464+4)}$
2024	3	\% ${ }^{(2,2,93771}$	(2.03, 2)					(3,08824	(2.697.38)	${ }^{(225,993,611}$		$(67,788.77)$	(589,386.65)					(975.964,3)	(882.45, 5 ,	(199,93999)		${ }^{\text {a }}$	5 (882,514.49)	(952.390.28)
2025 2026	$\frac{4}{5}$		${ }_{(1.2 .87 .35}^{(12.55)}$								S ${ }^{(312,25.6 .60}$			${ }^{293,383}$	223,882,60			- 184.641 .06				$\frac{(2,45,893.12)}{(1,449451.68)}$		
${ }^{2027}$	6	(3,141.39)	$)^{5}$ ($2,239,771$											29,3,3,3	209.142 .61			20, 119.94	206,90284	20,322.121		${ }_{(1,8959,43,23}$	(1,325,743.06)	
${ }^{2028}$	${ }_{8} 7$	${ }^{\text {s }}$	${ }_{\text {s }}{ }_{\text {s }}^{\text {s }}$											${ }_{2029338333}^{2033}$	${ }_{\text {19,460,39 }}^{1826326}$			- ${ }^{290.1919 .94}$	\|19,367.14	$\frac{243,031.18}{23592620}$		(1,935.80.0.22)		${ }^{\text {s }}$
${ }^{2029}$	$\stackrel{8}{9}$	${ }^{5}$	${ }^{\text {s }}$											${ }_{\text {29,333,3 }}$	${ }^{120,72267}$			290,191.94	168,89435	29, 2 , 8 2020		${ }_{(2,025,5,38.055}$		
${ }^{2031}$	10	${ }^{\text {s }}$ \% $(3.141 .39)$	\$ (1.708.71)											29,3,3,33	159,53, ${ }^{\text {a }}$			290,191.94	157.854 .19	222.40		[2.036,431.57]	S (1.107.68.85	(1,560,755,23)
${ }^{2032}$	${ }_{11}^{11}$	${ }^{5}$ s (3.141.39)	${ }^{5}$											${ }^{29933333}$				290.19194	147.518 .8 .8	215,930.06			(1.077, 24,499)	${ }^{(1,57,7,813,08}$
2034	${ }_{13}$	${ }_{5}{ }^{5}$	(1,544.82)											${ }_{293,33,33}$				20,19194		${ }_{\text {20, }}^{20,964083}$		Sele	S	(1.35.988.97)
${ }^{2035}$	14	${ }^{\text {s }}$ s $\quad(0,141.39)$	(1,33,57)											299,33,33	121.22290			20,19194	120.419,34	197,06, 5		(2,228,031.10	(924,553,69	(1.517, 88,760
2036 2037 203	15 16	${ }_{\text {s }}^{5}{ }_{5}^{\text {s }}$												${ }_{293,333733}^{293,33}$	${ }_{\text {113,759.72 }}^{10.317 .50}$					${ }_{\text {191.8.81.06 }}^{186.28 .16}$				
${ }^{2038}$	17	${ }^{5} \mathrm{~s} \quad(3.14139)$	(1,064, 10											293,3383	99,362.15			290.19194	98,298.05	180.888.02		(2,42,78,26)	S ${ }^{(820.078 .82)}$	s (1.509,75.3.31)
滈	18	${ }^{5} 8(3.14139)$	$5{ }^{5}$											2993,33,33	22.866182			200,191.94	${ }_{\text {91, } 1.867 .34}$	175				${ }^{\text {s }}$ \% (1,473,477.93)
2000	ота=	${ }_{\text {s }}^{\text {s }}$	${ }_{\text {s }}^{\text {s }}$	¢ (7,43.21)	$5 \quad(0,33,21)$	[27,794.12]	[25,975.8]	(3,08, 24]	[2,697.38]	(221,477,3)	(610,988.27]	(674,788.77)	(59\%,38.65)	4,40,000,00	2,180,66.12	0.001	(0.00)	${ }^{5}$ 2,9090152.10		s $1.817,3,4.59$			${ }_{\text {s }}(18,5,5,1,13,32)$	

Year	Project year	osm Cost	${ }^{\text {Discounted OXM }}$ Costat 7	$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered}$			$\left\|\begin{array}{c}\text { Discoumted } \\ \text { Prosesional } \\ \text { Serics } \\ \text { Designat Final } \\ \text { Finel }\end{array}\right\|$	$\begin{gathered} \text { Profsesional } \\ \text { Serivisecost } \\ \text { Construction } \end{gathered}$	\qquad	Construction Cost	$\begin{gathered} \text { Discounted } \\ \text { Construction Cost } \\ \text { at } 7 \% \end{gathered}$	$\underset{\substack{\text { Construcion Zone } \\ \text { Cost }}}{\text { cose }}$	$\begin{gathered} \text { Discounted } \\ \text { onstruction Zone } \\ \text { Cost at 7\% } \end{gathered}$	${ }_{\text {Amor }}^{\substack{\text { Amprized Brige } \\ \text { Replaement value }}}$	$\begin{array}{\|c\|c\|} \hline \text { Discounted } \\ \text { Amortizol } \begin{array}{c} \text { ridge } \\ \text { Reppacent } \\ \text { value at } 7 \% \end{array} \\ \hline \end{array}$	Residal Value	$\begin{gathered} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{gathered}$	$\underset{\substack{\text { Toat Cost } \\ \text { Alterative }}}{ }$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 3 \% \end{gathered}$				
$\frac{2022}{2023}$	1	(2,29371)	${ }^{\text {s }}$	${ }^{(0,43,8.81)}$	${ }_{(0,43,88)}$													(9,777.35]	${ }^{\left(0,775^{3}\right.}$		5	${ }^{(120.02124)}$	$5{ }_{5}$	
$\frac{2023}{2024}$	${ }_{3}$	${ }^{(2,2937)}$	\% ${ }^{\text {s }}$			(27,794	225,75.8.	${ }^{(3,088.24)}$	${ }^{5} \quad(2.697 .38$	${ }^{(43,2858.87)}$	${ }^{\text {s }}$	${ }^{(428.815 .71)}$	${ }^{\text {s }}$						(68,7749)		s	${ }^{(75,568.42)}$	${ }_{\text {s }}^{5}$	${ }^{(73,464+48)}$
${ }^{2025}$	4	(2,293711)	\$ ${ }^{\text {a }}$							(382,36735)	s ${ }^{\text {c }}$	-	S					(384,661.06	(13, 9,980.01)	(1352,0936		(847,15:79)	$5{ }^{5}$	(775,23,955
${ }^{2026}$	5	(3,141.39)	${ }^{5}$ s ${ }^{(2,396.55}$											${ }_{\text {29,33833 }}$	${ }^{223,782,60}$				${ }^{221.1880 .04}$	$\frac{257,83.78}{25032712}$	s		$\mathrm{s}^{\text {s }}$ (154.477.077)	(180.105989)
${ }^{2027}$	${ }^{6}$		${ }_{\text {s }}^{5}$ (2,23937											${ }_{293}^{293,33333}$					${ }_{\text {206, }}^{\text {2002.84 }} 1$		5	${ }^{(190.83,29)}{ }_{(222531.36}$	${ }^{(13,0,075.76)}(148204)$	
2029	8	(3,141.39)	s (1.956,30)											293,3383	182.67326			290,19194	180,716,96	235,92260		(210,194, ${ }^{\text {a }}$	(13, 898,79)	(170,907.65)
2330	9	(3,141.39)	${ }^{(1,828,32)}$											29,333,33	170,722.67			290,191.94	168,894.35	29.988		${ }^{(243,15272}$	(141.517.10)	(191,977.00)
2031 2032 02	10	(3,4.14.39,	${ }^{\text {s }}$											${ }^{299,3333}$				年易,19194	${ }_{\text {L }}^{157845.19}$	$\frac{222,40796}{21930065}$	5		s^{5}	(176,519,4)
${ }^{2033}$	${ }^{12}$	(3,141.39)	s (1.492.45)											${ }_{293,3383}$	$13,3.36 .55$			290.19194	${ }_{137.868 .10}$	290.600,		${ }^{(2551,23,74)}$	s^{5} (119,368.84)	(188,51.05)
2034 2035 025	${ }^{13}$		${ }^{\text {s }}$												${ }^{133,243.51} 10$				${ }_{\text {L }}^{128.848 .69}$	$\frac{203,53799}{10706599}$	S	(286,92.40	${ }_{\text {s }}^{5}$	
${ }^{2036}$	15	(3,141.199)	s (1.218,29)											293,333,33	113,759,72			290,19194	112.541/4	191.851.06	5	(310, $15,1,19$	$5{ }^{\text {s }}$ (120,28200	(205,906,611)
${ }_{2}^{2037}$	$\frac{16}{17}$		s ${ }^{\text {s }}$											${ }^{293,33333}$	${ }^{100,377.50} 0$			$\frac{290.19 .94}{20,1994}$			$\frac{5}{5}$		s^{5}	${ }^{(189,796788}$
${ }^{2039}$	18	(3,414, 39)	s (99448)											293,333,33	92,861.82			290,19194	91,667.34	175,50,900	s	${ }_{(319,274,46)}$	$5{ }^{5}$	
2040	Otal=	$\underset{(56,295.3)}{(8,14,9)}$	${ }_{\text {s }}^{5}$	s (7,43.81)	, 3,81)	94.12)	, 7.8 .81	s (3,088.24)	12,6	s (221,474,83)	s (610, 38,27)		¢ (37,54,2, ${ }^{\text {a }}$			$\underbrace{(0.01)}_{(0.01)}$	$\xrightarrow{(0.00)}$		${ }_{\substack{8,5857.32 \\ 1,12,6792}}^{\text {a }}$	(170.457.18		${ }^{(359,49929)}$		

INITIAL INVESTMENT FOR ALTERNATIVE $2=1$ (816,059.73)

| Benefit to Cost Ratio $=1$ | 6.96 | 4.06 | 5.41 |
| :--- | :--- | :--- | :--- | :--- |

BRIDGE: P-0190 SELLMAN ROAD OVER LTTLLE PAINT BRANCH ALTERNATIVE 2: BRIDGE PRESERVATION

Year	Project Year	оsм Cost		$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered} \mathbf{P}$	Discounted Professional Services Cost Preliminary Design at 7\%	$\begin{array}{\|c\|} \hline \text { Professional } \\ \text { Sericescost Final } \\ \text { Deign } \end{array}$		$\begin{aligned} & \text { Professional } \\ & \text { Services Cost } \\ & \text { Construction } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Professional } \\ \text { Services Cost } \\ \text { Construction at } \\ 7 \% \\ \hline \end{array}$	Construction Cost	$\left\|\begin{array}{c} \text { Discounted } \\ \text { Constrution Cost } \\ \text { at } 7 \%_{6} \end{array}\right\|$	${ }_{\text {cost }}^{\text {union Oone }}$	$\begin{gathered} \text { Discounted } \\ \text { Construction Zone } \\ \text { Cost at } 7 \% \end{gathered}$	${ }_{\substack{\text { Amortizad } \\ \text { Reprige } \\ \text { Rement } \\ \text { value }}}$		Residual Value	$\begin{gathered} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{gathered}$	${ }_{\text {a }}^{\text {Total Cost }}$ Alterative 2	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{gathered}$		$\underbrace{\text { Senfit }}_{\text {scounted Net }}$		
${ }^{2022}$	1	(2,2937.7)	${ }^{5}$	${ }^{\text {c }}$ (7,4332]	(1,43321)													${ }^{(9,726929}$	$5 \frac{(0,729.92)}{}$	${ }_{\text {(9,72692) }}^{(912375)}$		${ }^{(12,2020.4)}$	$\mathrm{s}^{\text {ctione }}$	$\frac{(12.020 .64)}{(12404 \times 8)}$
2023 2024 202	${ }_{3}$	$\underbrace{(2,293,7)}$	${ }^{\text {s }}$			[27,94.1.	${ }_{\text {[2,975, }]^{2}}$	(3.088.24)	${ }^{2.6973}$	${ }^{(43,2858.87)}$		s (172.017.35)	\% (150.246.61)										$\mathrm{s}^{\text {s }}$	${ }^{(13,45,4.48)}$
${ }^{2025}$	4	${ }_{(2,293,711)}$	${ }^{\text {s }}$							${ }^{(382,36735}$	${ }^{5}$ ($312,125.66$							(884,661.06	(313,998.01)	(352,019, ${ }^{\text {a }}$		(777,646,64)	${ }^{5}$	(684,20259)
${ }^{2026}$	5	(3,414,39)	${ }^{\text {s }}$ s (2,396.57)											${ }^{2993333,3}$	${ }^{223,782.60}$			200,1919.9	221.18860.04	${ }_{\text {25, }}^{25,81.78}$		${ }_{\text {(18, } 8 \text { 29,7, }}$		${ }^{18,6575}$
${ }_{2027}^{2028}$	${ }_{6}$		${ }^{\text {s }}$											${ }_{\text {299,33333 }}^{293}$	${ }_{\text {20, }}^{\text {20, } 1926.61} 1$			290.191.94	$\xrightarrow{206,90284} 1$					
2029 202	8	${ }_{(0,14139)}$	${ }^{5}$											299,33,33	182,663,26			200.19.1.4	180,71696	235,95260		${ }^{(102,22625025}$	${ }^{5}$	(88,36322)
${ }^{2030}$	9	(3,141.39)	(1,28832)											${ }^{299,3,3,3,3}$	${ }^{170,722,6}$			200.19,94		292,080,		${ }^{(119,58947)}$	s $\quad 16.958470$	(04,381.35]
$\frac{2031}{2032}$	$\frac{10}{11}$		${ }^{\text {s }}$															290.19.94	¢	${ }^{222,4979.96}$		${ }^{(118,9,2920070)}$		(90,660.64)
${ }^{2033}$	12	(3,.141.39)	${ }^{\text {s }}$ (1,492.45)											29,3,33,33	$139,360.55$			20.19194	137.868.10	209,600.83		${ }^{(134,709,78)}$	\% ${ }^{(63,999,6}$	(97, 317.21)
$\frac{2034}{2035}$	$\frac{13}{14}$		${ }_{\text {s }}^{\text {s }}$											${ }^{299,333,33^{3}}$	${ }^{1380.24,51}$			290.19,944	${ }_{\text {128,848, }}^{1204}$	$\frac{203,53799}{10760699}$	$\frac{5}{5}$	${ }^{(153,47709)^{5} \mathrm{~s}}$	${ }^{\text {s }}$	(107.41429)
2036	15	(3,141.39)	s (1,218,29)											29,3,33,33	113,759,72			200,19,94	112.541.44	191,581.06	5	(170,965,32)	${ }^{\text {s }}$ (66,030,30	(11,.08822)
2037 2038 038	${ }_{17}^{16}$		${ }_{\text {s }}^{\text {s }}$											${ }^{299,333,3}{ }_{293}$				- ${ }^{290.191 .94}$	$\xrightarrow{105,178.91}$					(10,825.30)
2339	18	(3, 141 3, 3)	s (99448)											299,33,3,3	92,861.182			200.19,94	9,1,86, 34	175,50.90		$(188,077.03)^{\text {s }}$	5 (59,524,54)	(113,759,4)
2040	19			(3.21)	S	S (27,94, 12	s 25.957 .8 .81$]$			\$ (721,47.83)	- (10,938.27)	¢ (172,017.35)	s (50, 24,0.6)	29,333.33	86,78675 .180 .86 .12 1.		$\underbrace{(0.000}_{0}$ (0.00)	${ }_{\text {20, }}^{20.191909}$		$170,457.18$ 2.291 .04 .88		$(208,790.45)$ 3,41524.68)		${ }^{(12.2,62.388)}$
					InITIAL	INVESTMEN	TFOR ALTER	NATIVE $2=1$		(816,059.12)										fit to Cost Ratio		4.22	2.56	3.33

BRDGE: P-0198031 CHERRY LANE (EAST) OVER CSX RALLROAD
ALTERNATIVE 2: BRIDGE PRESERVATION

Year	Project Yar	овм Cost	${ }_{\text {Discourtad OMM }}^{\text {costat }}$	$\begin{array}{\|c\|} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{array}$		$\begin{array}{\|c\|} \hline \text { Professional } \\ \text { Sericsestifinal } \\ \text { Deign } \end{array}$		$\begin{aligned} & \text { Professional } \\ & \text { Sorser } \\ & \text { Constructatiot } \end{aligned}$	\qquad	Construction Cos	$\begin{array}{\|c\|} \hline \text { Discoutted } \\ \text { Constutiton } \\ \text { at } 7 z_{6} \end{array}$	$\underset{\substack{\text { Construction Zone } \\ \text { Cost }}}{\text { a }}$	$\left.\begin{array}{\|c\|} \hline \text { Disounted } \\ \hline \text { Consturution Ione } \\ \text { costat } 77_{6} \end{array} \right\rvert\,$		$\begin{array}{\|c\|c\|} \hline \begin{array}{c} \text { Discounted } \\ \text { Amortize Bridge } \\ \text { Reppenent } \\ \text { value at 7 } \% \end{array} \\ \hline \end{array}$	Residal Value	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Residual value at } \\ \hline T_{0} \end{array}$	($\begin{gathered}\text { Total Cost } \\ \text { Aterative2 } \\ \text { a }\end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total Cost } \\ \text { Alternative 2 } \\ \text { Discounted at 7\% } \end{array}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 3 \% \end{gathered}$		(iscounted Net		
$\frac{2022}{2023}$	1	${ }_{\text {s }}{ }_{\text {s }}$	${ }^{\text {s }}$	${ }^{\text {s }}$	(7,43321)	12794	${ }^{259975.8}$											$\frac{(9,726.92}{(13,3747}$	(19726929]	${ }_{\text {(0,72692) }}^{(1223757}$		(12, 120.64	still	$\frac{(12.20 .69)}{(12,4648)}$
2024	3	(2,293,71)	s ${ }^{\text {s }}$					${ }^{(3,08824}$	(2,69738)	${ }^{(295,793,61)}$	5 (258,35,99)	S ${ }^{(353,790.65}$	(30,0,14,46					(654,96621)	(572,072.85)	(617, 36847)		(67, 1071.10	$\mathrm{s}^{\text {s }}$ (58,791.25)	(63, 410.59)
${ }^{2025}$	4	(2,29371]	${ }^{\text {s }}$							${ }^{(382,36735)}$	$5 \quad$ (312.125.66			¢ ${ }^{0933333}$	¢ 23388260			(884,661066	(131,998010)			S	${ }_{\text {s }}^{5}$	
${ }^{2027}$	6	(3,141.39)	(2,23977)											293,33,33	209, 22 2611			290.19194	206,92284	250,32.12		$\frac{5}{5} 5$	(1,292, 63, 111)	(1)
2028 2029 202	7														199.460 .39 18267326			- 290.199 .94					(1,248.27.37)	${ }^{\text {c }}$
${ }^{2030}$	$\stackrel{9}{9}$	(0,41139)	s ${ }^{\text {s }}$											29,3,33,33	s $1170,722.67$			200,19194	168,894.35	229,08820		(1,960,563.20	s $(1.141 .065 .38$	(1,547.88, .69)
$\frac{2031}{2032}$	${ }^{10}$		s ${ }^{\text {s }}$											${ }_{\text {293,333,33 }}^{293}$	${ }^{159,53,900}$			290.191.94	${ }_{\text {L } 19.845 .19}^{14751887}$			S		
${ }^{2033}$	12	(3,14139]	(1,49245)											293,333,33	139,360,55			200.1919.94	13,7868.10	209,600.83		(2.078,053.09]	9887,288060	(1,501,29,77)
${ }^{2034}$	${ }_{13}^{13}$	$\underbrace{(3,141.19)}$	$\frac{(1,394.82)}{[1,3037)}$											${ }_{\text {293, }}^{2933,33,33}$				${ }^{290.191 .94}$	${ }^{128.848,69}$	$\frac{203,53779}{10760659}$		S ${ }^{(2,145.908 .73}$	(952.809.14)	${ }^{(1,5050.972 .21)}$
${ }^{2036}$	15	${ }_{\text {(3,41/, } 39}$	(1,218,29)											293,333,33	113,759,72			200,19194	112.541 .4	191,851.06		s) (2,244,24, ${ }^{\text {a }}$	(870.352,84)	(1,483,73,41)
${ }^{2037}{ }^{2038}$	$\frac{16}{17}$		s ${ }_{\text {s }}^{\text {s }}$											${ }_{293}^{293,33333}$				290.191944	$\xrightarrow{10,178.98}$	$\frac{186,263.16}{18,838.02}$		$\frac{5}{5} \frac{(2,273,03537}{5}$	s 8 (82, 870.09)	$\frac{(1,459.00 .85)}{(1,42,281.60}$
${ }^{2039}$	18	(3,141.39)	s ${ }^{\text {s }}$											293,333,33	92,861.82			20,1919,94	91,867.34	175,50.90		5) $[2,376,547,24$	s (752,353,997	(1,437,58,16)
2040	(1at=	$\underbrace{(3,14]}_{(56,29573)}$	$)^{\text {s }}$	7.433.2	7,43,211	27,794,1	[25,975.81	¢ (3,.08.24]	¢ [2.697.38]	.477.83	(0,938.27	83,790.63	$5(309.00446$	${ }_{\text {2 }}^{29,3,33.3,3}$	${ }_{\substack{8,7,788.75 \\ 2,80.86 .12}}$		${ }_{\text {s }}^{\text {s }}$	$20,1919,93$ $3.30,150.22$	¢,	$\xrightarrow{170,457}$ 2,19966,		(2,42,983.72)	(125,74,45)	${ }_{5}^{1,5,540}$

INITIAL INVESTMENT FOR ALTERNATIVE $2=\$$ (816,059.12)

Benefit to Cost Ratio $=1$	42.44	21.81	31.32

BRIDGE: P-0198041 CHERRY LANE (WEST) OVER CSX RALIROAD
ALTERNATVE 2: BRIDGE PRESERVATION

\begin{tabular}{|c|}
\hline Year \& Project Yaar \& оям Cost \& \& \[
\begin{gathered}
\text { Professional } \\
\text { Services Cost } \\
\text { Preliminary Desig }
\end{gathered}
\] \& \& \[
\begin{array}{|c|}
\substack{\text { Professional } \\
\text { nerrices cosifinal } \\
\text { Deign }}
\end{array}
\] \& \& \[
\begin{aligned}
\& \text { Professional } \\
\& \text { Services Cost } \\
\& \text { Construction }
\end{aligned}
\] \& \(\qquad\) \& Onstruction Cost \& \[
\begin{array}{|c|}
\text { Discounted } \\
\text { Construction Cost } \\
\text { at } 7 \%
\end{array}
\] \& Cost \& \[
\begin{array}{|c|}
\hline \text { Discounted } \\
\text { Contrution Zone } \\
\text { Costat } \\
\text { Cote }
\end{array}
\] \& \(|\)\begin{tabular}{l}
Amortied Bridge \\
Rephaement value \\
\hline
\end{tabular} \& \begin{tabular}{c}
Discounted \\
Amortized Bridge \\
Replacement \\
Value at 7\% \\
\hline
\end{tabular} \& Residual \(\mathrm{V}_{\text {a }}\) \& \[
\begin{gathered}
\text { Discounted } \\
\text { Residual Value at } \\
7 \%
\end{gathered}
\] \& \& \& \[
\begin{array}{|c|}
\hline \text { Total Cost } \\
\text { Alternative } 2 \\
\text { Discounted at 3\% }
\end{array}
\] \& \& \(\underbrace{\substack{\text { Net }}}_{\text {Miscounted }}\) \& \& \\
\hline \(\frac{2022}{2023}\) \& 1 \& \({ }^{8}\) \& \({ }_{\text {s }}^{\text {s }}\) \& \& \& 79412 \& \({ }^{12597581}\) \& \& \& \({ }^{(43,28687]}\) \& \& \& \& \& \& \& \& \({ }^{(0,723992}\) \& (0,726.92) \& (9,72692) \& \& \% \& \& \(\frac{(12.020 .64)}{(13,4648)}\) \\
\hline \({ }^{2024}\) \& 3 \& (2,293,7] \& (2.03, 42) \& \& \& \& \& \({ }^{(3,088.2}\) \& \({ }^{(2,6973}\) \& \({ }^{(295,793.61)}\) \& \(5{ }^{(258,3,57,59}\) \& S (35,788.08) \& (308,98600) \& \& \& \& \& (64,933.64) \& (572,044.40) \& s (617,377.77) \& \& \(5{ }^{5}\) (674,072,97) \& \(5{ }^{(588,761.44)}\) \& \\
\hline \begin{tabular}{l}
2025 \\
2026 \\
\hline 202
\end{tabular} \& 4 \& \& \& \& \& \& \& \& \& \({ }^{(382,367.35)}\) \& s \({ }^{(312,125,66}\) \& \& \& \& \& \& \& (188,66.06) \& (13,998.01) \& \begin{tabular}{ll}
s \\
\hline
\end{tabular} \& \& (e) \& S \({ }^{\text {s }}\) (1,964,082.51] \& \\
\hline 2026

2027 \& 5 \& ${ }_{5}^{\text {S }}$ \& ${ }_{(2,293,59)}^{(2,297)}$ \& \& \& \& \& \& \& \& \& \& \& 293,333,33 \& ${ }_{\text {230, }}^{23,122.6 .61}$ \& \& \& 20,1994 \& ${ }_{\text {220,9,90.84 }}$ \& ${ }^{\text {250,322.12 }}$ \& \& ${ }^{\text {s }}$ \& ${ }^{(1,59425.53}$ \&

\hline 2028 \& \& ¢ ${ }^{\text {(3,141, } 39}$ \& (2.03924) \& \& \& \& \& \& \& \& \& \& \& 293,333.33 \& 195,460.39 \& \& \& 290,19194 \& 193,367.14 \& 243,0,31.18 \& \& ${ }^{5}(1.873 .053,727$ \& S (1.248,094,78) \& (1.568,65.00)

\hline 2029 \& 8 \& ${ }^{8}$ 8 ${ }^{(3,14139}$ \& s (1.956,30) \& \& \& \& \& \& \& \& \& \& \& 3,3333 \& \& \& \& \& (0,716,96 \& \& \& (1,89 \& $\mathrm{s}^{5}(1,1,81,7,7 / 589$ \&

\hline 2030 \& \& (3,41.199, \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 20,91.94 \& \& \& \& (1,900,35618) \& 4.914 \&

\hline 2032 \& 11 \& ${ }_{5}{ }^{\text {c }}$ (3.141/39 ${ }^{\text {a }}$ \& (1.596,92) \& \& \& \& \& \& \& \& \& \& \& 293,33,33 \& 199,11579 \& \& \& 20,191,4 \& ${ }_{1}^{14,5,518.87}$ \& 221,930.06 \& \& ${ }_{5}{ }^{\text {s }}$ \& \& ${ }^{(1,5226,274760}$

\hline ${ }^{2033}$ \& 12 \& ${ }^{\text {s }}$ (3,41/39 ${ }^{\text {a }}$ \& (1,92, 25) \& \& \& \& \& \& \& \& \& \& \& $293,333.3$ \& 139,660.5 \& \& \& 29.19194 \& 137.868 .10 \& 209,640.83 \& \& s (2,077, 83, 25 \& (987,164,46 \& (1,501.072, 40)

\hline ${ }_{2034}^{2035}$ \& 13 \& ${ }^{\text {cta }}$ \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{293,33,333}$ \& \& \& \& 290,19194 \& ${ }_{\text {L2,884.69 }}^{120.493}$ \& $\frac{203,34.79}{197.06 .59}$ \& \& \& \& $\frac{(1.50,940.04}{(1.499870 .06}$

\hline 2036 \& 15 \& ${ }^{5} \quad(3,141 / 39)$ \& (1,218,29) \& \& \& \& \& \& \& \& \& \& \& 29,333,33 \& 113,799,72 \& \& \& 290,19194 \& 112.541.44 \& 191,851.06 \& \& s (2,24,001.39) \& (870,220,43) \& (1.483, 49, 28)

\hline ${ }^{2037}$ \& 16 \& ${ }^{(3,141 / 3}$ \& (1,138. \& \& \& \& \& \& \& \& \& \& \& 293,33 \& 106,317.50 \& \& \& \& \& \& \& (1227 \& \&

\hline 2038 \& 17 \& (3,141.39) \& (1.064,10) \& \& \& \& \& \& \& \& \& \& \& ${ }^{293,333,33}$ \& 99.32 .15 \& \& \& 290.19194 \& 98.298 .05 \& 180,838.02 \& \& 5 S (2.346.290.14) \& (794,769,65) \& (1,462.130.44)

\hline 2039 \& 18 \& \& 5^{5} (99448) \& \& \& \& \& \& \& \& \& \& \& ${ }_{\text {2093,3333 }}^{2033}$ \& ${ }_{\text {92,861.82 }}^{88.88875}$ \& \& \& 290.19194
20.19193 \& \& ${ }^{175.579 .90} 1$ \& \& s (2,376.30191) \& (752,276,33) \& S ${ }^{(1,437.701 .74)}$

\hline 2040 \& Otal= \& ${ }_{5}^{\text {s }}$ \& $\mathrm{s}_{\mathrm{s}}^{\text {s }}$ \& \$ (7,433.21) \& s (7,433.21) \& \$ $227,94.12{ }^{\text {a }}$ \& (25,975.81) \& ${ }_{(3,088.24)}$ \& ${ }^{(2,697.38)}$ \& (721,477, 83) \& s (610,988.27) \& 353,758.08) \& 308,986.00) \& \& ¢ \& ${ }_{0}^{0.001}$ \& \& \& (8, \&	s	
s	$170,457.18$	
2,19996.81		\& \& (e) \& \&

\hline \& \& \& \& \& InITIAL \& INVESTMEN \& TFOR ALTER \& NATIVE $2=1$ \& \& [816,059.12] \& \& \& \& \& \& \& \& \& Benefit \& fit to Cost Ratio \& \& 42.43 \& 21.81 \& 31.31

\hline
\end{tabular}

Year	ject	оsм Cost		$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered}$	$\begin{array}{\|c} \text { Discounted } \\ \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \\ \text { at } 7 \% \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Professional } \\ \text { Sericescostrinal } \\ \text { Deigign } \end{array}$		$\begin{gathered} \text { Profesesional } \\ \text { Soreiser cost } \\ \text { Construction } \end{gathered}$	Discounted Professional Services Cost Construction at 7%	Construction cost	$\begin{gathered} \text { Discounted } \\ \text { Construction Cost } \\ \text { at } 7 \% \end{gathered}$	${ }^{\text {unction }}$ Oone				Resi	$\begin{array}{\|c} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{array}$	$\underset{\substack{\text { Toat Cost } \\ \text { Alterative }}}{ }$	$\begin{gathered} \text { Total cost } \\ \text { Bitheratio } \\ \text { Discounted at } \tau_{\%} \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{gathered}$		$\underbrace{\text { det }}_{\substack{\text { wiscounted } \\ \text { Benfitst }}}$		
2022	1	$\underline{\text { [2, } 23,7}$	$\frac{(2,293,71)}{}$	${ }^{(1,433.21}$		(27,9412	(25975											${ }^{(0,276,92}$	(0,72629	292		(12,20.64) s	(12,020.615	$\frac{(12020.04)}{(12364)}$
2023 2024 024	${ }_{3}$							${ }^{(3.088 .24)}$	${ }_{\text {[2.697.38] }}$		$\mathrm{s}^{\text {s }}$	(600,210.71)	${ }_{(559,184,83}$					(9,5,38.27.27	${ }_{(882,24.3,23)}$	${ }_{\text {(887, } 3.4 .855}$		${ }^{\text {s }}$		${ }^{(15,464748}$
${ }^{2025}$	4	(2,293,	(1.872							82,367.3	${ }_{\text {[312,12,66 }}$											(2.473.4.	2.019	2,26
2026	5	(3.141.39	${ }^{(2,36,55)}$											29,3,33.3.	233,782.60			20.191.94	221,386.04	257,83.7.7		${ }^{5}$	(1,28,683, 50	(1.66,880,911)
${ }^{2027}$	6	(3,141.39)	(2,23977)											${ }^{29,3,33,33}$	209,122,61			20,191, 24	206,90284	200,32,	5	S (1,882, 292,57)		(624,28.14)
2028 2029 2029	7													${ }_{\text {293,333,3 }}^{293}$				290.19.94	${ }_{\text {193,36.14 }}^{18071096}$	${ }_{2}^{243,031}$		${ }^{5}$	S 1.306 .03 .1 .38	(1.64, ,70724)
${ }^{2030}$	9	(3,141.39)	(1.288, 22)											293,33,33	${ }_{170,72267}$			20,19194	168,94.35	292, 80.20		${ }_{5}(2.0050 .8 .810 .45)$ s	(1,192,939.84)	${ }^{(1,061.18,933.44)}$
2031	10	(3,141.39)	(1.708,7											299333,33				220.191 .94	157.845.19	222.407	5	${ }_{5}(2,061.871 .27)$	(1,121,21.36	(1.58, 252, 64)
2032	11	(3, 141.39	(1.596,92)											${ }^{299,3,3,3,3}$	${ }^{149,115,79}$			200.191,94	${ }_{177.518 .87}$	215930	5	${ }^{5}(2,145,500.52)$	(1,090,56200	${ }^{(1,5996,350,060}$
$\frac{2033}{2034}$	${ }_{12}^{13}$	s ${ }_{\text {s }} \mathrm{s}^{(3,1.41 .39)}$	$\frac{(1,49245)}{(1,39482)}$															200.19194	${ }_{\text {lin }}^{13,888.10}$			S ${ }^{5}$	$s{ }^{5}(1.024 .688 .078$	
$\frac{2045}{}$	14	${ }^{5}$	${ }^{\text {s }}$ s ${ }^{\text {a }}$											293,33,3,33	${ }^{130,2,3.5} 1$			200.19194	${ }_{\text {L28, }}^{120.419 .93}$	${ }^{2097.537 .959}$				
${ }^{2036}$	15	${ }^{\text {s }}$ (3.141.39)	s (1.218,29)											293,33,33	113,759,72			20,19, 194	112.541.4	191.851.06	${ }_{5}$		(990,70.52	(1,55, 8, 99, 30]
${ }^{2037}$	16	(3,141.39)	(1,138.58)											${ }_{\text {293,33,33 }}$	106,317.50			290.191.94	105, 178.91		5	[2, $38.3,32,87$	(854,765.10]	(1,51)
${ }^{2038}$	17	(3,141.39)	s ${ }^{\text {s }}$											${ }_{293,333}$	99.362 .15			20,191.94	98,28.05	180.8	s	(2.42,2.278.76) ${ }^{\text {s }}$	${ }^{5}$ (883.671.66)	(1.58, 179.05)
39	18	${ }^{(3,141.39)}$	${ }^{5}$ s (994.48)											${ }^{293,33333}$	${ }_{\text {92,861.82 }}$			290,19194	${ }_{\text {91.867.74. }}$	${ }^{177,57}$	s	S	$5{ }^{5}$) $1.1491,5054,45)$
2040	19	s ${ }_{\text {s }}^{5}$	${ }_{\text {s }}^{\text {s }}$	\$ $7,43,21)$	(7,432.21)	S [27,94.12]	(25,975.81)			${ }^{[21,447.83]^{3}}$	(610,98,27]	(640,210.71)	- $(5590184838$		\%	s ${ }_{\text {s }}$	${ }_{\substack{0.000 \\ 0.00)}}^{(0)}$	-					s	

INTIAL INVESTMENT FOR ALTERNATIVE $2=1$ (816,059.12)

Benefit to Cost Ratio $=1$	44.51	22.98	32.91

BRIDGE: P-0205: WALKER MLLL ROAD OVER SOUTHWEST BRANCH ALTERNATIEE 2: BRIDGE PRESERVATION

RRIDGE: P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH ALTERNATIVE 2: BRIDGE PRESERVATION

Year	Project Yar	osm Cost	${ }_{\text {Discouted OMM }}^{\text {costat }}$ (\%\%)	$\begin{array}{\|c\|} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{array}$		$\left\|\begin{array}{\|c\|} \hline \text { Srrifessional } \\ \text { Desisign Final } \end{array}\right\| \mathrm{s}$			\qquad	Construction Cost		${ }_{\text {cost }}^{\text {crion Zone }}$		${ }_{\substack{\text { Amortized Brige } \\ \text { Replaement } \\ \text { alue }}}$	Discounted Amortized Bridge Replacement Value at 7\%	Residal Value	$\begin{array}{\|c} \substack{\text { Rescoanted } \\ \text { Residal value at } \\ 7 y_{6}} \end{array}$		$\begin{gathered} \text { Total Cost } \\ \text { Alternative 2 } \\ \text { Discounted at 7\% } \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 3 \% \end{gathered}$		(iscounted Net		Benefis
22	1	${ }_{\text {s }}{ }_{5}$		$5 \quad\left(\begin{array}{l}\text { (7,43.2] }\end{array}\right.$	(7,43321)													$\frac{(0,72692}{032370}$			5		$\frac{(12,20.64}{[207185}$	
${ }^{2023}$	2	${ }_{\text {s }}^{\text {s }}$	${ }^{\text {s }}$					${ }^{(3,08824}$	${ }^{\text {2. } 2.973}$									$\xrightarrow{(8,3,77.90}$	(68,54.990)	(123.388.855)	5		(120,8.40.83)	(102, 2984848)
${ }^{2025}$	${ }_{5}^{4}$		${ }^{\text {s }}$							${ }_{\text {(182, } 267.35}$	${ }_{\text {(31,2,12,66) }}$	S ${ }^{(133,488.89}$	(10,0015,67)							${ }^{(4774.235 .52)} 2$	${ }_{5}$	$\frac{675,40.04}{1229994}$		$\frac{618,12331)}{1029654}$
${ }^{2027}$	6	${ }_{5}{ }_{5}(3,141 / 3)$	${ }^{\text {s }}$) (2,239,77)											293,333.33	209,12261			200.19194	206,90284	250,322.12	s	126,70243	90,377.08	109,29,63
-2088	7	\% ${ }_{\text {s }}^{\text {s }}$	${ }^{\text {s }}$ s ${ }^{(2,093.24)}$											293,33.33 2933738	195.460.39 18267326			- 20.19 .919			s			$\underset{\substack{\text { 97,4,4.42 } \\ 97725.57}}{ }$
${ }^{2030}$	9	${ }_{5}{ }^{5}$ (3,41/3)	s (1.82832)											293,333.33	170,722.67			290.19194	108,894.35	29,08020	5	$109,384.82$	63.62926	$86,39,39$
${ }^{2031}$	${ }_{11}^{10}$	s	${ }^{\text {s }}$											${ }_{2}^{293,3333,33}$				${ }^{20} 20.19194$		$\frac{222,49796}{215,30.06}$	s		${ }_{\text {cil }}^{61,930,951}$	${ }_{\text {86,9293 }}^{76,02622}$
${ }^{2033}$	12	s^{5} (3,414.39)	s (1.49245)											293,333,33	139,360.55			29.19194	${ }^{137.868 .10}$	209.600.83	s	100.365 .58	50,53,52	
2034		${ }^{5}$	$\frac{(1,39482)}{[1035]}$																					
${ }^{2036}$	15	${ }_{5}{ }^{(3,141139}$	(1,218,29)											293,33,33	${ }_{\text {12, }}^{13,759.72}$			20,19194			$\frac{5}{5}$	86,880.14	${ }^{\text {s }}$	${ }_{\text {chem }}^{6,7,426.77}$
${ }^{2037}$	16	$5_{5}\left(\frac{3}{2} .141 .3\right)$	${ }^{5}$ (1.118858$)$											29,333,33	${ }^{10,3,317.50}$			20,1919.94	105.178.91	$18,683 \times 16$	${ }^{5}$	91,401.45	$5^{5} \quad 33.128 .09$	58,67.11
$\begin{array}{r}2088 \\ \hline 2039 \\ \hline 020 \\ \hline\end{array}$	${ }_{17}^{18}$	${ }_{\text {c }}^{5}$	${ }^{5}$ s (1.064.10)											${ }^{293,333,33}$	99,36.15			290.19.94	年, 8.28 .05		5	$\frac{78.74 .132}{8,4629}$	s	
${ }^{2039}$	${ }_{19}^{18}$	${ }_{5} 5$ (8.41.39)	(8)																		5		${ }^{\text {s }}$	
	al=	${ }_{5}(56,929.73)$	s $(31,668.67)$	\$ (7,432.21)	\% (7,33.21)	(27,794.12)	(25,975.81)	(3,088.24)	(2,697.38)	(22, ,477.83)	\$ (610,38.27)	(13,548.89)	(109,015.67)	4,400,000.00			$\left.{ }^{2} 24,4852,5\right]$	2006,99, $, 36,3919$	${ }_{\text {L, }}^{1,68,284,53}$	${ }^{2} 2.281,98$	\$	${ }^{1356,773}$	${ }^{(4,055.8}$	(8,

INITIAL INVESTMENT FOR ALTERNATIVE $2=\$$ (816,059.12)

Benefit to Cost Ratio $=1$	-0.45	0.17	-0.10

BRIDGE: P-0273 CARTER AVENUE OVER AMTRAK RALLROAD
ALTERNATVE 2: BRIDGE PRESERVATION

Year	Project Yaar	оям Cost		$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered}$		$\begin{gathered} \text { Professional } \\ \text { Services Cost Final } \\ \text { Design } \end{gathered}$		$\begin{aligned} & \text { Professional } \\ & \text { Services Cost } \\ & \text { Construction } \end{aligned}$	\qquad	Construcion Cost	$\begin{array}{\|c\|} \text { Discounted } \\ \text { Construction Cost } \\ \text { at } 7 \% \end{array}$	${ }_{\text {cost }}^{\text {nection }}$ Oone	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Contrution Zone } \\ \text { Costat } \\ \text { Cote } \end{array}$	$\|$Amortied Bridge Rephaement value	Discounted Amortized Bridge Replacement Value at 7\%	Residual $\mathrm{V}_{\text {a }}$	$\begin{gathered} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{gathered}$		$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{array}$				
$\frac{2022}{2023}$	1	${ }^{8}$	${ }_{\text {s }}^{\text {s }}$			794122	${ }^{12597581}$			${ }^{(43,28687]}$								(0,76692)	(1972692)	(9,72692)		${ }^{5}$	(12,020.64)	$\frac{(12.020 .64)}{(13,4648)}$
${ }^{2024}$	3		(2.03, 42)					${ }^{(3,088.2}$	${ }^{(2,6973}$	${ }^{(295,793.61)}$	$5{ }^{(258,3,57,59}$							(301, 17, 56]	(26, 2 ,98,40]	${ }^{5}{ }^{(1283,886.8}$		$5{ }^{(327,3080,72)}$	(285,920,80)	${ }^{(308,559,45)}$
2025 2026 202	4	${ }_{5}^{5}$	${ }_{\text {che }}^{(1,872355}$							${ }^{(382,367.35)}$	¢ ${ }^{(312,125.66}$	S (482,036.11)	${ }^{5}$ (399,485060)							s		(e)		(1.658.36.09)
${ }_{2026}^{2027}$	6	${ }_{5}^{5}$												${ }_{293}^{293,3333,33}$	${ }_{\text {230, }}^{23,122.6 .61}$			290,19.194	${ }^{201,980.08284}$	${ }^{250,0,327.12}$				(5959.0 .74 .999
2028		¢ ${ }^{\text {(3,141, } 39}$	(2.09324)											293,333.33	195,460.39			290,19194	193,367.14	243,0,31.18		s (738,807.50)	(492, 298,63)	(618,739,65)
2029	8	${ }_{5}{ }^{(3,141.39)}$	s (1.956,30)											-3,333,335								s (132,974.46)		
2030		s^{5}																0,9194					33.79	
2032	11	${ }_{5}{ }^{\text {c }}$ (3.141/39 ${ }^{\text {a }}$	(1.596,92)											293,33,33	199,11579			20,191,94	${ }_{1}^{14,5,518.87}$	${ }^{215,930,066}$		$5{ }^{5}$ ($823,4.41 .107$)	(4115.95.68)	(
${ }^{2033}$	12	${ }^{\text {s }}$ (3,41/39 ${ }^{\text {a }}$	(1,92, 25)											$293,333.33$	139.360 .55			290,191.94	${ }_{1377868.10}$	209,600.83	${ }_{5}$	${ }_{5}{ }^{(817,127,31)}$	(388,211.30)	(590,30.10.16
2034 2035 205	13	${ }_{\text {cter }}^{5}$	s ${ }_{\text {s }}^{\text {s }}$															$\frac{290.19194}{20,1994}$	${ }_{\text {L2,884.69 }}^{120.493}$	$\frac{203,34.79}{197.06 .59}$				
2036	15	${ }^{5}$ (3,41/39)	(1,218,29)											293,333,33	113,759,72			290,19194	112.541.44	19,1.851.06		s (915,051.17)	${ }^{(354,872,62)}$	(604,956,62)
${ }^{2037}$	16	${ }_{5}{ }_{5}^{(3,141 / 3)}$	${ }^{(1,188.58)}$											${ }^{2993,33333}$	${ }^{106,3175.5}$			290,19994 20,194	(10.178.915			5	${ }^{(32,179,62)}$	(s82,949,90)
${ }_{2}^{2038} 2039$	18	${ }_{\text {¢ }}^{5}$	${ }^{(1.0694 .108)}$											${ }_{29}^{293,333,333}$	${ }_{\text {9, }}^{92.36215}$			290.19194	98,29805 $99.86,3.34$	${ }^{1880.838 .02} 17{ }^{175.50,90}$	¢		${ }^{(326,421.70)}(132816,07)$	
total $=$		(3,141.39)	s ${ }^{(929,42}$											299,33, 3	$88,786.75$	(0.01	(0.0)	290.191.93	85,8,	170.457.	s	(1.014,212.89)		(599,73, ${ }^{\text {a }}$
		[66,295,3]	(31,668.67)	¢ (7,432.21)	(7,43,21)	(27,794.12]	[25,975.81	3,088.24	[2,697.38]	(22,447, 83)	¢ $\quad 610,988.27]$	136.11		4,40,000.00	2,18, ,86.12	0.01	0.00	3,101,904,75	1,108.677.72	2.012,316.40		S (14,74,0,6,990)	(7,762,781.44)	(057,292.088
					InITIAL	INVESTMEN	T FOR ALTER	NATIVE $2=1$		[816,059.12]									Benefit	fit to Cost Ratio		18.10	9.64	13.55

Year	Project Yar	овм Cost		Professional Services Cost Preliminary Design				$\begin{gathered} \text { Professional } \\ \text { Soresiss aot } \\ \text { Construction } \end{gathered}$		Construction Cost C	$\left\|\begin{array}{c} \text { Discounted } \\ \text { Constrution cost } \\ \text { ant } 7 / c_{c} \end{array}\right\|$	${ }_{\text {Construction Zone }}^{\text {Cost }}$	$\begin{gathered} \text { Discounted } \\ \begin{array}{c} \text { Constrution } \\ \text { Costat } 7 \gamma_{6} \end{array} \end{gathered} \begin{gathered} \text { Ae } \\ \text { Re } \end{gathered}$	${ }_{\text {Amor }}^{\text {Ampred Brige }}$		Residual Value	$\left\|\begin{array}{c} \text { Discauted } \\ \text { Residual value at } \\ 7_{\%} \end{array}\right\|$	$\pm \begin{gathered}\text { Totat Cost } \\ \text { Alterative } \\ \text { a }\end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$			$\underbrace{\text { d }}_{\substack{\text { Siscoumed } \\ \text { Benfitiset }}}$	${ }_{\text {Discounted at }}$ S 7%	
$\frac{2022}{2023}$	$\frac{1}{2}$	$\frac{(2,293.71)}{(2,29371}$	$\frac{(2,293.71)}{(2,14360}$	s		[27,94,12	${ }_{\text {[2,975,81 }}$			${ }^{(43288,87)}$										${ }_{\text {(9,726.92) }}^{(1,23757)}$		$\frac{1(12020.64)}{}$	$\mathrm{s}^{\text {s }}$	$\frac{(12,2020.64)}{(73,4648)}$
${ }^{2024}$	3	${ }_{(2,293,71)}$	(2,003, 42)					${ }^{(3,088.24)}$	S 12.697 .38	${ }^{(295,793,611)}$	$5 \quad(288,357.59$							(301, 175,56	[263.058.40	(123,886.85)		${ }^{5}\left(\frac{3}{512,26278)}\right.$	$5 \quad(289,3777$	${ }^{(1312.246494}$
2025	4	(2,293,7]	(1.87235)							2.367 .35 /	$\mathrm{S}^{(312,12,66)}$	${ }_{\text {(95, } 536,9}$	4885972					(979,99797	(1999970.26)	(896,88997]		${ }^{(2,15,1,264000) \mathrm{s}}$	(1,75,2,5,9	(1,967,796,160
2026	5	(3, 141 3, ${ }^{\text {a }}$	(2,366.55)											${ }_{\text {2993383, }}$	${ }^{233,78260}$			290,1919.94	${ }^{221.138604}$				${ }^{(7112885272}$	(828,888.81)
2027 2028	${ }_{7}$													${ }_{\text {20, }}^{293,3333.33}$				${ }^{290.199 .94}$	${ }_{\text {206, }}^{209028.84} 1$	${ }_{\text {20, }}^{23,322.12}$		(977.20.17)		
2029	8	(3,141.39)																				(97,3,		
${ }^{2030}$	9	${ }^{(3,141139)}$	(1,888, 32)											${ }^{2993,33,33}$	170,722.67			209.191.94	168,894,35	229.088 .20		(1,02, 2,97,59) s	S (601, 179.08.	(815,410,47)
$\stackrel{2031}{2032}$	$\frac{10}{11}$													${ }_{293,3333,33}$				290.1919494	${ }_{15178.45 .19}^{14.1887}$	$\frac{222,40796}{215930.06}$				
2033	12	${ }^{(3,14113}$	(1.929.4.												139,360.55			200.19,94				(1.080.667.4		
2034	13	${ }_{(8,141.39}$	(1,34, ${ }^{\text {a }}$)											${ }_{293,33,33}$	130.243.51			200.191.94	${ }_{128.848 .69}$			(1,141816,94.	${ }^{5}$ (506,980.38	(880, 877.43)
2035	14	(3, 141 139	(1,33, 57)											293,33,33	121,2290			20.19194				${ }^{(1,13,5,83,51) \mathrm{s}}$		
2036	${ }^{15}$	(3,141.39)	(1,21829)											2993,33,33	113,759,72			200,191.94	${ }^{112,541 / 4}$	191,851.06		(1, $1.99,57.43)$	${ }^{(465,216.81}$	(799,062000
${ }_{\text {2037 }}^{2038}$	${ }_{17}^{16}$		s ${ }^{\text {s }}$											${ }_{203,3,33,33}^{293}$	$\frac{106,317.50}{0936215}$				$\xrightarrow{10,178.91}$	$\frac{186,263.16}{180838.012}$		(1,193,373.08)	${ }^{\text {s }}$	S 7 (76.980.77)
2039	18	(3,141.39)	s ${ }^{(994.48)}$											29,3,33,33	92,861.82			200,19,94	99,866,34			$\frac{5}{5}$		
2040	19	(3,41, 39	s ${ }^{(929,42}$											299,33,3,3	86,786,75	0.011	0.00	29,19193	${ }_{85,857.32}$	170.45		(1,322.19,27	(391,189,28	(77,60
						(27,94, 12	(25,975.81)			(721,47)				4,400,000.00	2,18,8,86.12			2,988,03,366	1,016,180.52	1,908, 360.13		s (19,19,7,71.25) s	S (10,078,188.68	(14,24, ${ }^{\text {a }}$,

INITIAL INVESTMENT FOR ALTERNATIVE $2=\$$ (816,059.12)

Benefit to Cost Ratio $=1$	23.43	12.35	17.47

\begin{tabular}{|c|}
\hline Year \& Project Yaar \& оям Cost \& \& \[
\begin{gathered}
\text { Professional } \\
\text { Services Cost } \\
\text { Preliminary Desig }
\end{gathered}
\] \& \& \[
\begin{array}{|c|}
\substack{\text { Professional } \\
\text { nerrices cosifinal } \\
\text { Deign }}
\end{array}
\] \& \& \[
\begin{aligned}
\& \text { Professional } \\
\& \text { Services Cost } \\
\& \text { Construction }
\end{aligned}
\] \& \(\qquad\) \& Onstruction Cost \& \[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\substack{\text { constrution cost } \\
\text { ant }}
\end{array}
\] \& Cost \& \[
\begin{array}{|c|}
\hline \text { Discounted } \\
\text { Contrution Zone } \\
\text { Costat } \\
\text { Cote }
\end{array}
\] \& \(|\)\begin{tabular}{l}
Amortied Bridge \\
Rephaement value \\
\hline
\end{tabular} \& \begin{tabular}{c}
Discounted \\
Amortized Bridge \\
Replacement \\
Value at 7\% \\
\hline
\end{tabular} \& Residaal Value \& \[
\begin{array}{|l|}
\hline \text { Discounted } \\
\text { Residual vilue at } \\
7 y_{0} \\
\hline
\end{array}
\] \& \({ }_{\text {a }}^{\text {Total Cost }}\) Aterative 2 \& \& \[
\begin{array}{|c|}
\hline \text { Total Cost } \\
\text { Alternative } 2 \\
\text { Discounted at 3\% }
\end{array}
\] \& \& \(\substack{\text { scounted Net } \\ \text { Benefit }}_{\text {det }}\) \& \& \({ }_{\text {Discounted }}^{\text {Sat } 3 \%}\) \\
\hline \(\frac{2022}{2023}\) \& 1 \& \({ }^{\text {s }}\) \& \({ }_{\text {s }}^{\text {s }}\) \& \& \& 79412 \& \({ }^{12597581}\) \& \& \& \({ }^{(43,28687]}\) \& \& \& \& \& \& \& \& \({ }_{\text {O, }}^{0,26929}\) \& (1972692) \& (9,72692) \& s \& \({ }^{(12,020.64)}\) \& (12.020.64) \& \(\frac{(12.020 .64)}{(13,4648)}\) \\
\hline \({ }^{2024}\) \& 3 \& \({ }^{(2,293,7]}\) \& (2.03, 42) \& \& \& \& \& \({ }^{(3.08824)}\) \& \(\underline{0.697 .3}\) \& \({ }^{(295,793.61)}\) \& \(5^{(258,357.99)}\) \& \& \& \& \& \& \& (301, 17, 5. \({ }^{\text {c }}\) \& (263,058,40 \& (123,886.8] \& \(s\) \& \({ }^{(119,1,88,78)}\) \& 5 S \(2787,78,78\) \& (300.801.33) \\
\hline \begin{tabular}{l}
2025 \\
2026 \\
\hline 202
\end{tabular} \& 4 \& \({ }^{\text {s }}\) \& \({ }_{\text {che }}^{(1,872355}\) \& \& \& \& \& \& \& \({ }^{(382,367.35)}\) \& \({ }^{\text {s }}\) (312,125.66] \& \$ \({ }^{336,604.80}\) \& S [274,76978) \& \& \& \& \& (271.2658, \& (688.767.99] \& \& \& (1, \({ }^{(1,99.983 .42)}\) \& \({ }_{\text {s }}{ }_{\text {s }}^{\text {s }}\) \& \\
\hline 2026

2027 \& 5 \& \& ${ }_{\text {(2,39.59) }}^{(2,29977}$ \& \& \& \& \& \& \& \& \& \& \& 293,333,33 \& ${ }_{\text {230, }}^{23,122.6 .61}$ \& \& \& 20,1994 \& ${ }^{220,9,9828.084}$ \& ${ }^{250,3,32.12}$ \& ${ }_{5}$ \& ${ }^{\text {che }}$ \& (293,50.37) \& ${ }^{\left(\frac{1858,212.03)}{(35,128.73)}\right.}$

\hline 2028 \& \& ¢ (3,141.39) \& (2.09324) \& \& \& \& \& \& \& \& \& \& \& 293,333.33 \& 195,460.39 \& \& \& 290,19194 \& 193,367.14 \& 243,0,31.18 \& s \& (412,693,22) \& (29,989,18) \& (370,748.60)

\hline 2029 \& 8 \& ${ }^{8} \quad(3,14139)$ \& (1,956,30) \& \& \& \& \& \& \& \& \& \& \& ${ }_{2}^{293,333,33}$ \& \& \& \& \& (0,716,96 \& \& \& ${ }^{(439,99496)}$ \& \&

\hline 2030 \& \& (3,141.39 \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& \& 0,9194 \& \& \& 5 \& \& \&

\hline 2032 \& 11 \& ${ }^{5}$ (3.141/39) \& (1.596,92) \& \& \& \& \& \& \& \& \& \& \& 293,33,33 \& 199,11579 \& \& \& 20,191,94 \& ${ }_{1}^{14,5,518.87}$ \& ${ }^{215,930,066}$ \& 5 \& ${ }^{\text {cta }}$ \& [255,657.73] \& (

\hline ${ }^{2033}$ \& 12 \& ${ }^{\text {s }} \quad(3,141.39]$ \& (1,92, 25) \& \& \& \& \& \& \& \& \& \& \& 293,33,33 \& 139.360 .55 \& \& \& 290,191.94 \& ${ }_{1377868.10}$ \& 20.960 .83 \& \& (4999938,47 \& (237,24,29 \& (366, 177,02)

\hline ${ }_{2034}^{2035}$ \& 13 \& ${ }^{\text {cta }}$ \& \& \& \& \& \& \& \& \& \& \& \& ${ }^{293,33,333}$ \& ${ }^{130,24351} 121.12290$ \& \& \& $\frac{290.19194}{20,1994}$ \& ${ }_{\text {L2,884.69 }}^{120.493}$ \& $\frac{203,34.79}{197.06 .59}$ \& \& \& ${ }^{\text {ciele }}$ \& ${ }^{(375,14.4 .53)}$

\hline 2036 \& 15 \& ${ }^{5}$ (3,1,1/39 \& (1,218,29) \& \& \& \& \& \& \& \& \& \& \& 299,33,33 \& 113,75972 \& \& \& 290,1919.9 \& 112.541.44 \& 191,851.06 \& s \& (568.106.09) \& (220,31, 34) \& ${ }^{(375,58.059}$

\hline 2037 \& 16 \& (3,141.39 \& (1,138.58) \& \& \& \& \& \& \& \& \& \& \& 29,333.3 \& 106,317.50 \& \& \& \& \& \& \& ${ }^{564}$ \& \&

\hline 2038 \& 17 \& (3,141.39) \& (1.064,10) \& \& \& \& \& \& \& \& \& \& \& ${ }^{29,3,33,33}$ \& 99.32 .15 \& \& \& 290.1919.94 \& 98.298 .05 \& 180,838.02 \& 5 \& (602, 888.67 7) \& (204,151.50] \& (375.575.65)

\hline 2039 \& 18 \& ${ }^{5} \quad(3,14139)$ \& 5^{5} (99448) \& \& \& \& \& \& \& \& \& \& \& ${ }_{\text {2093,3333 }}^{2033}$ \& ${ }_{\text {92,861.82 }}^{88.88875}$ \& \& \& $\begin{array}{r}290.19194 \\ 20.909 \\ \hline 2019\end{array}$ \& \& 175.579090 \& \& (599,350,75) \& (1897399.10) \& ${ }^{(1322,217.06)}$

\hline 2040 \& OTAL \& \% ${ }_{\text {c }}$ \& ${ }^{5}$ \& s (7,433.21) \& \% (7,43.21) \& ¢ ${ }^{(27,794.12}$) \& (25,975.81) \& (3,088.24) ${ }^{\text {s }}$ \& [2,697.38] \& (721,477, 33) \& ¢ (610,988.27) \& 336,604.80) \& [274,769.78) \& [4. \& 2, \& ${ }_{\text {cole }}^{(0.01)}$ \& (0.00) \& 3, 3 2,4,7,36.0797 \& , $1,227.3732 .39$ \& \& \& ${ }^{\text {a }}$ \& \&

\hline \& \& \& \& \& INITIAL \& INVESTMEN \& TFOR ALTER \& NATIVE $2=1$ \& \& [816,059.12] \& \& \& \& \& \& \& \& \& Benef \& fit to Cost Ratio \& \& 11.64 \& 6.33 \& 8.79

\hline
\end{tabular}

Year	Project Yar	osm Cost		$\begin{array}{\|c\|} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{array}$		$\left\lvert\, \begin{array}{l\|} \hline \text { Professinal } \\ \text { Serics } \\ \text { Design Final } \end{array}\right.$		$\begin{aligned} & \text { Professional } \\ & \text { Sorsice } \\ & \text { Construction } \end{aligned}$	$\begin{array}{\|c} \hline \text { Discounted } \\ \text { Professional } \\ \text { Services Cost } \\ \text { Construction at } \\ 7 \% \\ \hline \end{array}$	Construcion cost		${ }_{\text {cost }}^{\text {coion Zone }}$			\qquad	Residual value	$\begin{array}{\|c} \hline \text { Riscounted } \\ \text { Residuan Valua at } \\ 7_{6} \end{array}$		$\begin{gathered} \text { Total Cost } \\ \text { Alternative 2 } \\ \text { Discounted at 7\% } \end{gathered}$					Senefis
2022	1	(2,293.71)	${ }^{5}$	S ${ }_{\text {(}, 4.43 .211}$	(1,43321)														${ }_{\text {(1)726.92] }}^{(685740}$			${ }^{(12,2020.64)}$		$\frac{1(12.020 .64)}{(13,4648)}$
2023 2024 202	$\stackrel{2}{3}$		s ${ }^{\text {s }}$				${ }^{[25,975.811}$	(3.08824)	$5 \quad(2.6973$		${ }_{\text {s }}^{\text {s }}$								(68,575494					${ }^{(13,464,48)}$
${ }^{2025}$	4	(2,293.71)	s (1.872.35)							${ }_{(382,367.35)}$	$5{ }^{(312,225,66}$	\$ ${ }^{(201,819,411}$	(164,744,75)					[586,480,4]	(478,7427.76	(536,712.71)		(800,789,1]	653,682.45	(732.8354.45)
${ }^{2026}$	5	(3,414.39)	$\mathrm{s}^{\text {s }}$ s (2,396.55)											${ }_{\text {2 }}^{293,33,33}$	${ }^{23,782.60}$			200.19,94		$\frac{257,83.78}{203321212}$		${ }_{\substack{6,1.80,35 \\ 67317170}}$	${ }_{4}^{47,177.70}$	Sti.94.35
${ }^{2028}$	7	(3,14139)	\% (2.09324)											293,333.33	195,460,39			20,191,94	193.367.14	243,031.18		52,707.61	35,21.30	S.
2029 2030 200	${ }_{8}^{8}$		s ${ }^{\text {s }}$											${ }_{293}^{29,3,33,33}$				- 20.1919 .94			${ }_{5}$	S5,40645 43.2059		
2031	10	(3, 14139)	(1,78,71)											293,333.33	159,53,30			200.19194	157, 45, 19	222,4096		49.13499	26,726.18	
${ }^{2032}$	11		${ }^{(1,59,92)}$											${ }_{\text {293,33,33 }}^{293}$					${ }_{\text {L }}^{14,518,87}$	$\frac{215,930.06}{2096083}$		${ }_{\substack{3,3,20.34 \\ 30.4895}}$		- 24.793946
2034	13	(3,141.39	(1,34, 2 2)											293,333.33	130,24.5.51			20,19194	128.888 .69	203,343,99	s	23,033.39	10.227 .99	Li.
$\frac{2035}{2036}$	$\frac{14}{15}$	${ }^{(3,141 / 39}$	s ${ }^{\text {s }}$												$\frac{121,122.90}{113,7972}$			- 20.190194		$\frac{197.60 .59}{10198506}$	s	- 29.443 .32 s	s	
2037	16	(3,141.39)	s (1.138.88)											293,333.33	106,317.50			20,19194	105,178,91	186,283.16	${ }_{5}$	19.012 .04 s	${ }^{5} \quad 6.890 .84$	${ }^{\text {P12.20.10 }}$
2038	${ }_{17}^{17}$		${ }^{(1.064+109}$											${ }_{293,33333}^{293}$				200.1994.94	98,280,05 91.86	$\frac{180.83 .02}{175.50 .90}$		${ }_{\text {l }}^{1,202.17}{ }_{8}^{8,4903} \mathrm{~s}$		${ }_{\text {c }}^{4999.16}$
2040		(3,141.39)	(292,42)											293,333.33	$8,86886.75$	(0.01)	(0.00)	200.19193	85,857.32	170,457.18		(10,380.36)	s ${ }^{\text {a }}$ /,071.17	${ }_{(6,097.37)}$
		(56,299.73)	${ }^{(31,668.67)}$										164,744.75)	\$ 4.40000000 .00	2,18,8,86.12	(0.01)			\% 1,337,480.02	${ }^{2,268,754,38}$				(127,366.77)

INITIAL INVESTMENT FOR ALTERNATIVE $2=1$ (816,059.12)

Benefit to Cost Ratio $=1$	0.87	0.88	0.89

BRDGE: P-0484 MCKENDREE ROAD OVER TIMOTHY BRANCH ALTERNATIVE 2: BRIDGE PRESERVATION

Year	Project Yar	оям Cost		$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Desig } \end{gathered}$		$\begin{array}{\|c\|} \substack{\text { Professional } \\ \text { Serrics } \\ \text { Design final }} \end{array}$		$\begin{aligned} & \text { Professional } \\ & \text { Services Cost } \\ & \text { Construction } \end{aligned}$	\qquad	Contruction Cost	$\begin{gathered} \text { Discounted } \\ \text { Construction Cost } \\ \text { at } 7 \% \end{gathered}$	${ }_{\text {cost }}^{\text {uncion Zone }}$	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Contrution Zone } \\ \text { Costat } \\ \text { Cote } \end{array}$	$\|$Amortied Bridge Rephaement value	Discounted Amortized Bridge Replacement Value at 7\%	Residaal Value	$\begin{array}{\|c} \hline \text { Riscounted } \\ \text { Residual value at } \\ 7 y_{6} \end{array}$	${ }_{\text {Totat Cost }}^{\substack{\text { Alterative }}}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{array}$		$\substack{\text { scounted Net } \\ \text { Benefit }}_{\text {det }}$		
$\frac{2022}{2023}$	1					79412	${ }^{25,9758.81}$			${ }^{(43,28687]}$								(0,76692)	(1972692)	(9,72692)	5	(12,020.64)		$\frac{(12.020 .64)}{(13,4648)}$
${ }^{2024}$	3	(2,293,7]	(2.03, 42)					S ${ }^{(3,088824)}$ /	${ }^{(2,6973}$	${ }^{(295,793.61)}$	5 (258,37.999							801,175.56	(26, 2 ,98,40]	s ${ }^{(283,886.85)}$	5	${ }^{(310,1,88,87)}$	${ }^{5}$ [270,931.185	(29, $383.711{ }^{\text {a }}$
2025 2026	4		${ }_{\text {che }}^{(1,872355}$							${ }^{(382,367.35)}$	s ${ }^{(312,125.66]}$	¢ ${ }^{(143,955.2]}$	S (117.510.34)		23,78260					${ }^{4887385788}$		(${ }^{(1,12,6,60935}$	(919.64.82)	${ }^{\text {a }}$
${ }_{2}^{2027}$	6	${ }_{5}{ }_{5} \quad(3.14139)$	${ }^{5}$ \% (2,23,77)											293,333,33	209, 122 2, 6			20,19194	${ }_{20690284}$	250,322.12	5	${ }^{1331}$	${ }^{\text {che }}$	(286,27.71)
2028														${ }_{293,3383.33}$	${ }_{\text {l }}^{195.460 .39} 1$			290,19194	${ }_{\text {l }}^{193.367 .14} 18$		$\stackrel{5}{5}$	(ex	s $0234,24.13$	${ }^{(2924.46994)}$
2030	9	${ }_{5}{ }^{5} \quad(3.141439$	${ }^{5}$ (1.828,32)											$293,333.33$	$170,722.67$			290.191.94	1688.843 .35	229,080.20	5	(377,30.47)	(219,630.05	(297,899.74)
${ }^{2031}$	10	${ }^{8}$ (3,414,39)	(1,788.71)											${ }^{293,33.33} \mathbf{2 , 3 8 3}$	¢ ${ }^{\text {s }}$				${ }^{157.745 .19}$	${ }_{\text {22, }}^{22,409796}$	5	S	(208,30.69	
$\frac{2032}{2033}$	11	${ }_{\text {s }}^{5}$												${ }^{293,333,33}$	${ }^{1499,15.759 .95}$			290.19194	${ }_{\text {L }}^{1475198887} 1$		$\frac{5}{5}$	(404,27.33)		(30,99798)
$2{ }^{2034}$	13		(1,34, 8 ,											293,33,33	130243.51			290,19194	128.884 .69	20,3,3479	${ }^{5}$	(432.210	(199,06,41)	(303, $14.3,40$
${ }^{2035}$	14	(3,141.39)	(1,303,57)											299333,33	121,7			20, 1919.94		197.006		(438,25595)		433.98)
2036	${ }^{15}$	${ }^{5}$ (3.141.39)	(1,218,29)											${ }_{29,3,33,33}$	${ }^{113,75972}$			290,19194	${ }_{1}^{12,541.4}$		5	${ }^{(4661,302388}$	(178,901.02	(304,975,22)
2037 2038	${ }_{16}^{17}$	${ }_{\substack{\text { s }}}^{\substack{\text { s }}}$	$\frac{(1.13 .58)}{(1,66+10)}$											${ }_{2903,33,33}$	${ }^{109,9,372.15}$			- 20.19 .9 .94	$\xrightarrow{\text { O58,29805 }}$		${ }_{5}$		(169,47.07)	
2039	18	${ }_{(3,14139)}$	(99448)											2993,33, 3	92.861			29.1919	91.86	175,5		(498.14.41)	(157	
2040	19	(3,141.39)	\% (929,42)											${ }_{\text {29,3,3,3,33 }}$	88.788 .75	0.01	(0.00)	20.19193	${ }_{\text {85, } 8 \text { S7, } 32}$	170,457.18	5	(523,060.62)	${ }_{\text {(154,754,76 }}$	(307, 242,90)
total $=$		(66,295,73)	(31,68.67)	33.2	s (0,432.21)	\$ ${ }^{(27,794.12)}$		(3,088.24) ${ }^{\text {s }}$	s (2,697.38)	[721.447 .83)	s (610, 38.27$)$	S (143,955.22	(117,510.34	4,400,000.00	1880.866.12	0.01)	0.00)	3,43,985.65	1.384,64.7.43	2,321,788.31		(7,778,24.38)	(4,24, $0,33,25$)	(5.8880.083.60)
					INITIAL INVESTMENT FOR ALTERNATIVE $2=1$ \$					(816,059.12]									Benefi	fit to Cost Ratio		9.53	5.20	7.21

BRDGE: P-0579 DERRICK pLace over butler branch

\begin{tabular}{|c|}
\hline Year \& Project Year \& osm Cost \& \& $$
\begin{gathered}
\text { Professional } \\
\text { Services Cost } \\
\text { Preliminary Design }
\end{gathered}
$$ \& \& $$
\left|\begin{array}{c}
\text { Professional } \\
\text { Serviecscost Final } \\
\text { Design }
\end{array}\right|
$$ \& \& Professional
Services Cost
Construction \& \qquad \& Constraction Cost \& $$
\begin{array}{|c|}
\text { Discounted } \\
\text { Construction Cost } \\
\text { at } 7 \%
\end{array}
$$ \& Cost \& $$
\begin{aligned}
& \text { Discounted } \\
& \text { Construction Zone } \\
& \text { Cost at } 7 \%
\end{aligned}
$$ \& \& \& Residual value \& $$
\begin{array}{|c|}
\hline \text { Discounted } \\
\text { Residual Value at } \\
7 \%
\end{array}
$$ \& (taterat Cost \& \& \& \& (issounted Net \& \& ${ }_{\text {Discounted at }}$ S 3%

\hline ${ }^{2022}$ \& 1 \& \& ${ }_{\text {s }}{ }^{\text {s }}$ \& ${ }^{\text {s }}$ \& \& 5 \& ¢ 22.97581 \& \& \& 286.87 \& S502 \& \& \& \& \& \& \& (10726.92) \& \& ${ }^{(0,72692}$ \& $\frac{5}{5}$ \& ${ }^{(12,020.64)}$ \& $s^{\text {s }}$ \&

\hline ${ }^{2024}$ \& 3 \& s (2,293.71) \& ${ }^{5}$ S (2.003 42) \& \& \& \& \& (3.08824) \& ${ }^{\text {2, } 297738}$ \& (295,793.61) \& s (288,377.59) \& \& \& \& \& \& \& (301,175,56) \& [263, 058.40 \& [28, 888.85] \& 5 \& \& ${ }^{265,35295}$ \& [286,363.08)

\hline 2025

2026
2026 \& $\stackrel{4}{5}$ \& \& \& \& \& \& \& \& \& ${ }^{(382,36735)}$ \& s (312,25.66) \& s (0,139.6 \& ${ }_{\text {(5, 828.04) }}$ \& 29,3,3833 \& 60 \& \& \& \& \& \& $\stackrel{5}{5}$ \& (399,66.99) \& ${ }^{\frac{132,0643}{218,0693}}$ \& ${ }_{\substack{362,183,00 \\ \hline 259628}}$

\hline 2027 \& 6 \& ${ }^{\text {s }}$ (3,41/39 ${ }^{\text {a }}$ \& \$ (2,239,77) \& \& \& \& \& \& \& \& \& \& \& 293,333,33 \& 209, 12261 \& \& \& 290.191.94 \& 206,90284 \& 250,32.12 \& s \& 28, 127,31 \& 20,4,26,21 \& $24.8,4.181$

\hline | 2028 |
| :--- |
| 2029 |
| 2029 | \& 7 \& (3,141.199) \& s ${ }^{\text {s }}$ \& \& \& \& \& \& \& \& \& \& \& ${ }_{293}^{29,3333,33}$ \& \& \& \& 290.19194 \& |lis.36.14 \& \& S \& ${ }_{\substack{28.7661 .70 \\ 28.089898}}$ \& \&

\hline 30 \& 9 \& (3,41/3, \& (1.88832) \& \& \& \& \& \& \& \& \& \& \& ${ }^{293,33833}$ \& 170,722.67 \& \& \& 290.191.94 \& 168.894 .35 \& 229,08820 \& 5 \& 28856339 \& 166.265 .68 \& 225,514.79

\hline | 2311 |
| :--- |
| 2032 |
| 0. | \& $\stackrel{10}{11}$ \& \& ${ }_{\text {s }}{ }_{\text {s }}{ }^{\text {s }}$ \& \& \& \& \& \& \& \& \& \& \& ${ }_{293,3,33,33}$ \& ${ }^{\frac{1}{199,53,590}} 1$ \& \& \& 290,191.94 \& \& $\frac{222,40796}{215930.06}$ \& $\frac{5}{5}$ \& ${ }_{2085}^{28,083.59}$ \& \&

\hline ${ }^{2033}$ \& 12 \& ${ }^{5}$ (3,41/39) \& ${ }^{\text {s }}$ (1,492 45) \& \& \& \& \& \& \& \& \& \& \& 293,333,33 \& 139,30.55 \& \& \& 290,191.94 \& 137.888.10 \& 20.9604 .83 \& s \& 285.937 .67 \& \& 20.657 .46

\hline | 2034 |
| :--- |
| 2035 |
| 205 | \& ${ }^{13}$ \& \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{293,3,33,33}^{23}$ \& \& \& \& $\frac{290.1919 .94}{20,19194}$ \& $\frac{128.88,96}{120.4034}$ \& ${ }^{203,3,3799} 19$ \& $\frac{5}{5}$ \& ${ }_{2}^{2859,92215}$ \& \& ${ }_{\text {200, } 28.45}^{194.5571}$

\hline ${ }^{2036}$ \& ${ }^{15}$ \& s (3,414.39) \& S (1,21829) \& \& \& \& \& \& \& \& \& \& \& 29,333,33 \& 113,759.72 \& \& \& 290,191.94 \& 112.541.4 \& 191,851.06 \& s \& $22^{2539495}$ \& 110.681 .08 \& 188,699.68

\hline ${ }^{2037}$ \& ${ }_{17}^{16}$ \& \& ${ }_{\text {s }}^{5}$ \& \& \& \& \& \& \& \& \& \& \& ${ }_{20}^{29,3,33,33}$ \& \& \& \& | 290.191 .94 |
| :--- |
| 20.1919 | \& $\xrightarrow{10,717.91}$ \& \& 5 \& \& 578.40 \&

\hline 2038
2039

2039 \& ${ }_{18}^{17}$ \& ${ }_{5}^{5}{ }_{5}^{\text {¢ }}$ \& \& \& \& \& \& \& \& \& \& \& \& ${ }_{2}^{293,3,3333}$ \& ${ }_{\text {9, }}^{9,3681.15}$ \& \& \& | 20, 19194 |
| :--- |
| 20.1994 | \& ${ }_{\text {9, }}^{\text {9,29805 }}$ \& ${ }_{1}^{180,38,580}$ \& 5 \& ${ }^{285,593982}$ \& ¢9,688.89 \& ${ }^{1772,884.757}$

\hline 2040 \& 19 \& ${ }^{5}{ }_{\text {c }}^{(3,141.39)}$ \& (929,42) \& \& \& \& \& \& \& \& \& \& \& 293,333.33 \& 88.788 .75 \& 0.01 \& \& 290.19193 \& ${ }_{8.585732}$ \& 177.457. \& s \& ${ }_{2} 285.188 .59$ \& 84,377.01 \& 167,518,24

\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{IL=}} \& (56,29, 73$)$ \& (31,68.67) \& ($7,43,2.21$ \& s (0,43,21) \& s [27,94.12] \& S $(25.975 .817)$ \& s (3,088.24) \& ¢ ${ }^{(2,69738)}$ \& S (221,471.83) \& S \& 7,13, \& 5.88.0 \& ,40,000.00 \& 2.18,866.12 \& (0.01) \& (0.00) \& 3,576.801.27 \& s $1.496,324.73$ \& s $2.446,93138$ \& s \& 3,998.98.15 \& 1,453.778.41 \& 2.88, ,59.611

\hline \& \& \multicolumn{3}{|l|}{} \& \multicolumn{5}{|l|}{INITIAL INVESTMENT FOR ALTERNATIVE $2=1 \%$} \& \multicolumn{2}{|l|}{[816,059.12]} \& \& \& \& \& \& \& \& Benef \& fit to Cost Ratio \& \& 4.29 \& 1.78 \& -2.93

\hline
\end{tabular}

RRDGE: P-0596 LELLAND ROAD OVER COLINGTON BRANCH ALTERNATIE 2 : BRIDGE PRESERVATION

Year	Project yar	оsм Cost	${ }_{\text {Discouted OMM }}^{\text {costat }}$	$\begin{gathered} \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Professional } \\ \text { Services Cost } \\ \text { Preliminary Design } \\ \text { at 7\% } \\ \hline \end{array}$	$\left\|\begin{array}{c} \text { Professinalal } \\ \text { Sericiescosif Final } \\ \text { Deign } \end{array}\right\|$		$\begin{aligned} & \text { Professional } \\ & \text { Services Cost } \\ & \text { Construction } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Discounted } \\ \text { Professional } \\ \text { Services Cost } \\ \text { Construction at } \\ 7 \% \\ \hline \end{array}$	Construcion Cost	$\begin{gathered} \text { Discounted } \\ \text { Construction Cost } \\ \text { at } 7 \% \end{gathered}$		$\begin{gathered} \text { Discounted } \\ \text { Construction Zone } \\ \text { Cost at } 7 \% \end{gathered}$	${ }_{\text {Amortized Brige }}$	Discounted Amortized Bridge Replacement Value at 7% Value at 7	Residaal Value	$\begin{gathered} \text { Discounted } \\ \text { Residual Value at } \\ 7 \% \end{gathered}$	Total Cost	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at } 7 \% \end{gathered}$	$\begin{gathered} \text { Total Cost } \\ \text { Alternative } 2 \\ \text { Discounted at 3\% } \end{gathered}$		Miscouted Net		
2022	1	(2,293,71)	s (2,293,71)	S ${ }_{0} 1,43$														${ }^{(9,726,92}$	${ }^{(1,72692}$	(9,72692]		(12,020.64)	5 (12,020.64)	(12020.64)
2023	2	(2,298,711)	$\mathrm{s}^{(2,143.66)}$			(27,794.12	${ }_{(25,975.81)}$	${ }^{\text {S }}$	2.6973													${ }^{(75,688.29)}$		(73,4648)
2024 2025	4	${ }_{(2,2939]}^{(2,2971)}$	${ }_{\text {s }}^{5}$							${ }^{(3822,36735}$	${ }^{5}$ s	${ }^{(105.487733)}$	(86,109.41)					(800,75.50		$\frac{(2838.868 .85}{(48,55.58)}$			$\frac{5}{\text { s }}$	
2026	5	(3,14.1.39)	${ }^{\text {s }}$ (2,396.55)											293,333.33	223,82,60			20.191.94	221.38604	257.831.78		(55,54699)	s (42,376.54)	(49, 3 S2, 79)
${ }^{2027}$	6	(3,141.39)	s (2, 239,77)											$293,333.33$	209.142 .61			200.191.94	206902 24	250,322.12		${ }^{(57,18974}$	(40,75.49)	${ }^{(49,3,32,37)}$
${ }^{2028}$	7		s ${ }_{\text {s }}(2,093.24)$											299,33,33 2933838	19,46039 1820326			29.19194 20.194	$\begin{array}{r}193,367.14 \\ 18071196 \\ \hline 1\end{array}$			(69,422.18)	s (46,28,933)	
2029 2030	$\stackrel{8}{9}$	${ }_{(3,14139)}$	${ }^{5}$											299,333,383	${ }_{\text {18, }}^{18,2,732.26}$			20.199.94	${ }_{\text {I } 180,76996}^{16894.35}$	${ }^{2929,802020}$		${ }^{(87,3,55,93}$	${ }_{5}{ }_{5}$	
2031	10	(3,141.39)	s (1.788.71)											293,33,33	159.535 .90			290.191.94	157.845.19	${ }^{222.4097 .96}$		${ }_{8}^{85,56,0.08}$	${ }^{46,588.350}$	
$\stackrel{2032}{2032}$	${ }_{11}^{11}$		$s^{\text {s }}$															290.191.94	${ }_{\substack{147,18,87 \\ 13788810}}$			${ }_{\text {cose }}^{(98.87 .8 .87)}$		${ }^{(13,57.58)}$
$\frac{2035}{2034}$	${ }_{13}^{12}$	(3,14139)	${ }^{5}$											${ }_{\text {29, } 3,33,3}^{29,3,3}$	¢			200.19994		${ }^{2093,540479}$			s ${ }^{\text {s }}$	
${ }^{2035}$	14	(3,41, 397	${ }^{5}$ (1.30.57)											$293,333.33$	s 121.722 .90			290.191.94	120.419,34	197,06:59		(116,4732)	${ }^{5} 488.3$	(79,281.34)
2036	15	(3,41, 397	s (1.218,29)											293,333.33	s 113,799.72			290.191.94	112.541.4	19,1.851.06	5	(130,799, 88	S (50,70, 2)	(86,477.4)
${ }^{2037}$	${ }_{17}^{16}$	(3,41139)	${ }^{5}{ }^{(1,1,88,58)}$											293,383,33	s ${ }^{\text {s }}$			290.19994	105,178.91	$188,263.16$			s ${ }^{(48,11909}$	
2038	$\stackrel{17}{18}$													${ }_{\text {293,333,3,33 }}$						$\frac{180.8 .8 .02}{175.50 .90}$				
2040	18	(3,41.39)												299,333,33	${ }^{5}$				${ }^{5} \quad 8,8,85732$	${ }_{170,457.18}$	5	$(1659.270 .46$		
	TaL=	(56,295.73)	\% $(31,668.87)$	\$ (7,43.21)	(7,43,21)	(27,794.12)	(25,975.8]	¢ (3,088.24)	[2,697.38)	(721,477.83)	\$ (610,988.27)	(105,487.73)	(86,10,41)	\$ $4.400,000000$	\% 2,180,866.12	(0.01)	s (0.00)	3,47,453.14	\% 1,416,043,36	\$ $2,356,911.51$	5	(2,799,73,3,	\% (1,736,363,25)	/ $(2,234,168.44)$

Benefit to Cost Ratio $=1$	3.43	2.13	2.74

Operating and mantenance cost pouli cherrywood Lane over i.95/-49	
Toal P. P. C. FY 2022 Operating Buget for PPW\&T is	¢ 43,351.205.00
Share for Roadway and Bride Mainenance 1\%o foperating Bugget	512.05
Share for Bridge Maintenance NBB Bridges $=1 / 3$	144.50402
Assumed evenly distribued damons remaining 46 assest with poor of firic condition elemens $=$	3,141.39
O\&M expendidure tend $=0 \%$ budget is expected to remain onstant in the fiture	(3,141.3)

PROFESSIONAL SERVICES COST FOR PRELIMINARY DESIGN P- 0117 PRELININARY DESIGN P-0117-4		PROFESSIONAL SERVICES COST FOR FINAL DESIGN AND CONSTRUCTION SERVICES P-0117 CHERRYWOOD LANE OVER I-95/-495	
		The projected cost for Final Deigig is $=$	525.000 .00
The professional services cost for preliminary design was obtained	S 122	90\% of tis cost will be exenended in 2023 prior 10 project	s (27,794.12)
		10% of this osos will be expented in 2024 prio	
$\underbrace{\text { This cost was spen fiom } 2018}$		construction. Cost per bridge $=$	
For 17		Evenly distributed amongal brider	

ALTERNATIVE 2: BRIDGE PRESERVATION

Construcion 2one Cost	${ }_{\text {adt }}$	$\begin{aligned} & \text { Volume } \\ & \text { Distribution } \end{aligned}$	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CSX RAILROA } \\ & \hline \begin{array}{c} \text { Value of Travel } \\ (\$ / \mathrm{hr}) \end{array} \end{aligned}$	Number of Personal Trips 32702.21		$\begin{gathered} \text { Number of } \\ \text { Trucks } \end{gathered}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{array} \\ \hline \end{array}$	Total Work Zone Travel Delay Cost	
	2202	88.2%	0.02225	16.2					s	495,19983
	T	$\frac{11.8 \%}{\substack{\text { ¢0\% }}}$	${ }_{0}^{0.02225}$	29.4 320		${ }^{4375.13}$	11010	${ }_{\substack{97363 \\ 24704}}$	\$	
	0.2225 mi	Main	ce Duation $=$	42 Days		Year 3		TOTAL $=$		(668,585.90)

CONSTRUCTION ZONE COST P-01185 MEIZEROTT ROAD OVER PANT BRANCH									
Constuction Zone Cos	adt	Volume Distribution	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \end{gathered}$	$\begin{gathered} \text { Value of Thavel } \\ (\mathrm{S} h r \mathrm{rare} \end{gathered}$	$\begin{gathered} \text { Number of } \\ \text { Personal Trips } \end{gathered}$	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|} \text { Bunes } \\ \text { Buses Tips } \end{array}$	$\begin{gathered} \text { Number of } \\ \text { Trucks } \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{array} \\ \hline \end{array}$	Total Work Zone Travel Delay Cost
	14850	88.2%	0.02011	16.2	21873.16			439,949	29.344 .14
		$\frac{11.8 \%}{10.8 \%}$	${ }^{0.002011} 0$	${ }_{3}^{29.4}$		${ }^{2922,34}$	${ }^{1488500}$	${ }_{\substack{58.859 \\ 29869}}$	
Truck tavel cost Vehicie ocupaney $=1 \quad$ Work Zone Lengh $=$	0.2011 mi	Mainern	ce Duration $=$	${ }_{42 \text { Days }}^{4.20 .}$	or 1.5 mon	Car3		TOTAL=	\$ $41412,64.28)$
Speed Reduction $=$	10 MPH	Project $\mathrm{Co}^{\text {a }}$	Ileion Time $=$	2 Yars					

ALTERNATIVE 2: BRIDGE PRESERVATION

ALTERNATIVE 2: BRIDGE PRESERVATION

mucion Zone Cost	${ }^{\text {adT }}$	Volume Distributio	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \end{gathered}$	$\begin{gathered} \text { Value of Travel } \\ (\$ / \mathrm{hr}) \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Number of } \\ \text { Personal Trips } \end{array} \\ \hline 15996.13 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Number of } \\ \text { Busines } T \text { rips } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Number of } \\ & \text { Trucks } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{array}$	Total Work Zone Travel Delay Cos	
	10860	$\frac{88.29}{1184}$	0.02269	16.2					$\stackrel{s}{8}$	${ }^{246,9940.05}$
	10% of ADT	${ }_{\text {ction }}^{1.0 \% \%}$	${ }_{0}^{0.02269}$	${ }_{32,0}$		2190.0	1086.00	${ }_{\text {24.641 }}^{4.85}$		
Workzo	0.2269 mi	Maine	ce Duration $=$	42 Days	or 1.5 mont			TOTAL $=$		(334,021.22)

operating and mantenance cost p-.204 ritche road over southwest branch		PROFESSIONAL SERVICES COST FOR PRELIMINARY DESIGN P-0204 RITCHIE		PROFESSIONAL SERVICES COST FOR FINAL DESIGN AND CONSTRUCTION SERVICES P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH	
Toal P.G. Co. FY 2022 Operating Buget for PPWeT is	\$ 43.351 .205 .00	The professional services cost forpreliminary design was obtainedfrom actual consultant fees	S 122,684.00	The projected cost for Final Design is = 90% of this cost will be expended in 2023 prior to project advertisement. Cost per bridge $=$	$\begin{aligned} & \text { S } 525,000.00 \\ & \hline \$(27,794.12) \end{aligned}$
	${ }_{4}^{43,512,05}$				
	$\frac{144.50 .02}{3,14139}$				
O\&M expenditure tend $=0 \%$ budget is expected to remai consatat in the future	${ }^{\text {s }}$ S ${ }^{\text {(3,141.39) }}$	This cost was spent from 2018 ${ }^{\text {to }}$		10% of this cost will be expended in 2024 prior to construction. Cost per bridge $=$	(3,088.24)
		2021 at 3 \% \% Infation	${ }^{5}(1,43$	Refer to the Bridge Project Gramt Cost Esimale	
		For 17 rides		For 17 ridges	

Constru	${ }_{\text {adt }}$	${ }_{\substack{\text { Volume } \\ \text { Distriutuion }}}^{\substack{\text { a }}}$	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \end{gathered}$		Number of Personal Trip	Number of Business Tri	Nombe of	Total Work ZoneDelay Time veh-	Total Work Zone Travel Delay Cost	
Personal trael Venicicle octupancy all trave $1.67 .88 .82 \%$ of toal lips.	2245	88.2\%	0.02027	16.2	33660.14			669.96	${ }^{5}$	455.846.71
Busiess ravel. 11.8% of of toal lips.		11.8\%	0.02027	29.4		4423.01		89.63	s	110.678 .83
Truck tavel cost Vehicle occupancy $=1$	10% of ADT	10.0\%	0.02027	32.0			2224.50	45.85		${ }^{611,132.02}$
Work Zone Lenght $=$	$\frac{0.2027 \mathrm{nif}}{10 \mathrm{MPH}}$	$\xrightarrow{\text { M Minienen }}$	cee Duation $=$	$\frac{42 \text { Days }}{2 \text { Years }}$	${ }^{\text {or } 1.5 \mathrm{~m}}$	of Yar 3		Total=		(627,657.56)

CONSTRUCTION AND ADMINISTRATION COST P-0204 RITCHIE ROAD OVER SOUTHWEST BRANCH		
The prjecteded onstraction ost is=		8.909 .307 .00
30\%\% Contingeny Cost		2.609,42.10
Administration and Legal Fees Cost=		6,983.00
Constracion Management and Inspecion Cost=	s	$89,881.00$
Toal Constracion Cost=		12.264,613.10
Total Construcion Cost per Bridge $=$		${ }^{221,477.83}$
6% will bespent in 2023		
411% will be spent in 2024	s	
2025		

	AMORTIEED BRIDE REPLACEMENT VLUE

ALTERNATIVE 2: BRIDGE PRESERVATION

Opera ting and mantenance cost porovs walker mill road over southwest branch		PROFESSIONAL SERVICES COST FORPRELIMINARY DESIGN P-0205 WALKER PRELIMINARY DESIGN P-0205 WALKER		PROFESSIONAL SERVICES COST FOR FINAL DESIGN AND CONSTRUCTION SERVICES P- 0205 WALKER MILL ROAD OVER SOUTHWEST BRANCH	
	3,351.21			The projected cost for Final Design is $=$	S22,000,0
Share for Roadwy ynd Bridge Maitenance 1\% of operation Bugge			S 122.684.00	90\%\% of this cost will be expended in 2023 prior 0 p project	S (27.794.12)
Share for Fride Mainenance NBE Bridges $=1 / 3$	144	from actual consulant fees		adverisement. Cost per bride $=$ (
Assumed evenly distribucd among remaining 46 sasess with poor of fair condition elenens $=$	3,141.39			10% of tis cost will be expended in 2024 prior to	$5^{(3.088 .24)}$
O\&M expenditure tend 0 O\% budget is expected 0 tom	4,39)		S (7,43.21)		
				$\frac{\text { Refer to the Brides Project Grant Cost Esimate }}{\text { For } 1 \text { Brides }}$	

OPERATING AND MAINTENANCE COST P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEASTBRANCH		PROFESSIONAL SERVICES COST FOR PRELIMINARY DESIGN P-0220 RIVERDALE ROAD OVER TRIBUTARY TO NORTHEAST BRANCH		PROFESSIONAL SERVICES COST FOR FINAL DESIGN AND SERVICES P-0220 RIVERDALE ROAD OVE TRIBUTARY TO NORTHEAST BRANCH	
	S 43.351 .205 .00			projected cost	S 525.00
		The professional services cost for preliminary design was obtained	S 122.68	90% of this cost will be expended in 2023 prior to project	(27,94,12)
Assumed evenly distributed among remaining 46 asests silh poor of firic ondition elemens $=$	3.141.39				
O\&M expenditure terd $=0 \%$ budget is expected to remin constat it the fiutue	s ${ }^{(3,414.39)}$	This osis	s (7,433.21)		
		For 17		(tant Cost Esimale	

Construction Zone Cost	${ }^{\text {adT }}$	$\begin{gathered} \text { Volume } \\ \text { Distribution } \end{gathered}$	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \end{gathered}$	$\begin{aligned} & \text { Value of Travel } \\ & (\$ / \mathrm{hr}) \end{aligned}$	${ }^{\text {Pamber of of }} \text { persal }$	$\begin{gathered} \text { Number of } \\ \text { Business Trips } \end{gathered}$	$\begin{aligned} & \text { Number of } \\ & \text { Trucks } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{array}$	Total Work Zone Travel Delay Cos	
Personal travel Vechicle occupancy all trave $=1.67 .88 .8 . \%$ of toal trips.	5000	88.2%							5	
		$\frac{11.18 \%}{10.0 \%}$	${ }^{0.0 .1936}$	29.4		${ }^{985} 30$		${ }_{\text {19,072 }}^{19.09}$	$\stackrel{5}{8}$	${ }_{\text {23,549.52 }}$
Truck tavel cost. Venicle occupancy $=1$	${ }^{10 \% \% \text { or ADT }}$	${ }^{10.0 \% \%}$	${ }^{0.001936}$	${ }^{32.0}$			500.00	9.678	s	${ }^{13,007727}$
Work Zone Levegh $=$	$\frac{0.1936 \mathrm{mi}}{10 \mathrm{MPH}}$	$\frac{\text { Mainerem }}{\text { Proicet } C_{0}}$,	${ }^{42 \text { Days }}$		of Year 4				(133.548.89)

AMORTIEED BRIDGE REPLACEMENT VALUE

ALTERNATIVE 2: BRIDGE PRESERVATION

Operatng and mantenance cost p-0233 Lottisord road over western branch		$\begin{aligned} & \text { PROFESSIONAL SERVICES COST FOR } \\ & \text { PRELIMINARY DESIGN P-0283 LOTTSFORD } \\ & \text { ROAD OVER WESTERN BRANCH } \end{aligned}$		ROFESSIONAL SERVICES COST FOR FINAL DESIGN AND CONSTRUCTION SERVICES P-0283 LOTISFORD ROAD OVER WESTERN BRANCH	
Toal P. P. Co. FY 2022 Operatiog Sudget for DPW\&	s 43.351 .205 .00			The projected cost for Final Desigi is $=$	S 525.000 .00
	(els		S 122,684.00		S 27.794 .121
Assumed evenly distributed among ememining 46 sasest with poor of fair condition elemens $=$	s ${ }^{\text {s.14139 }}$			10% of this sost will be expented in 2024 prior to	
O\&M expenditire tered $=0 \%$ budget is expected to remin constat in the fiutue	s (3,141.39)	Tris cost	s (7,43.21)	on. Cost per bridee =	${ }^{\text {s }}$ (3,088.2]
			$5(0,45.2)$	Refert tote Brides Project Gramt Cost Estinate	
		For 17		Brides	

Construction Zone Cost	${ }_{\text {adt }}$	(13 LotTsFo		$\begin{aligned} & \text { Value of Travel } \\ & (\$ / \mathrm{hr}) \end{aligned}$	$\begin{gathered} \text { Number of } \\ \text { Personal Trips } \end{gathered}$	Number of Business Trips	$\begin{aligned} & \text { Number of } \\ & \text { Trucks } \end{aligned}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{array} \\ \hline \end{array}$	Total Work Zone Travel Delay Cost	
	18846	$\frac{88.2 \%}{1.28 \%}$	${ }_{0}^{0.002157} 0$	$\frac{16.2}{10.4}$	27759.03	${ }^{371379}$		$\frac{598.817}{80114}$	$\stackrel{8}{8}$	
	${ }^{10 \% \% \% \text { of AD }}$	$\frac{11.8 \%}{10.0 \%}$	${ }_{0}^{0.002157} 0$	$\frac{29.4}{32.0}$		${ }^{3713.19}$	1884.60	${ }_{\text {80, }}^{40.65}$	${ }_{5}$	$\xrightarrow{54,639.59}$
Work Zone Length =	0.2157 mi	$\xrightarrow{\text { Maineter }}$	Lec Duraion $=$	42 Days	or 1.5 mo	of Year4		TOTAL $=$	s	(560,999.26)

LTERNATIVE 2: BRIDGE PRESERVATION

CONSTRUCTION ZONE COST P-O294 DECATUR STREET OVER NORTHE AST BRANCH

		TIVE 2: BRIDGE PRESER	TIIO			
Operating and matitenance cost p-0396 TUCKEr road over henson crek		PROFESSIONAL SE PRELIMINARY DESIGN P- 0396 TUCKER ROAD OVER HENSON CREEK		PROFESSIONAL SERVICES COST FOR FINAL DESIGN AND CONSTRUCTION SERVICES P-0396 TUCKER ROAD OVER HENSON CREEK		
Toal P., C. C. FY 2022 Operatiog Budget for DPW\&T is	S 43,351.2050.00	The professional services cost forpreliminary design was obtainedfrom actual consultant fees	S 122.684 .00		s ${ }^{525,000000}$	
	S 433.512 .05 8					
Assumed venenly distributcd among temaining 46 assests with poor or fair condition elemenss $=$	${ }^{4.4 .41 .159}$					
O\&M expenditure tend $=0 \%$ budget is expected do remain onstant in the future	${ }^{\text {s }}$ (3,141.39	This cost was spent from 2018 to 2021 at 3% Inflation	s (7.43	10% of this cost will be expended in 2024 prior to		
				Refer to the Bridge Project Grant Cost Estimate For 17 Bridges		

ALTERNATIVE 2: BRIDGE PRESERVATION

alternative 2: BRIDGE PRESERVATION

CONSTRUCTION ZONE COST P-O490 GALAHAN ROAD OVER TINKERS C										
nostruction Zone Cost	${ }_{\text {at }}$	$\begin{gathered} \text { Volume } \\ \text { Distribution } \end{gathered}$	$\begin{aligned} & \text { Work Zone } \\ & \text { Delay Time } \end{aligned}$	$\begin{gathered} \text { Value of Travel } \\ (\$ / \mathrm{hr}) \end{gathered}$	Number of Personal Trips	Number of Business Trip	$\begin{gathered} \text { Number of } \\ \text { Trucks } \end{gathered}$	Total Work Zone	Total Work Zone Travel Delay Cos	
	3793	88.2\%	${ }_{0}^{0.02186}$	16.2	${ }_{5868.86}$			${ }^{122.107}$	s	8, 8 ,081.45
Businest ravel 11.18% of ofotul lips.		$\frac{11.8 \%}{1.0 \%}$	${ }_{0}^{0.02186}$	29.4		${ }^{777.45}$		${ }^{16,336}$	s	${ }^{20.172 .04}$
	${ }^{10 \% \% \text { of fid }}$	10.0\%	${ }^{0.02186}$	32.0			379.30	${ }_{\text {8,290 }}$		11,1417.77
	$\frac{0.2188 \mathrm{mi}}{10 \mathrm{MPH}}$	$\xrightarrow{\text { Mroiecten Con }}$	ce Puraion $=$	$\frac{42 \text { Days }}{2 \text { Years }}$	or 1.5 mont	Sof Year 4		Total		11, 395.

Constraction Zone Cost	${ }_{\text {adt }}$	Volume Distribution	$\begin{gathered} \text { Work Zone } \\ \text { Delay Time } \\ \text { hr/day } \end{gathered}$	$\begin{aligned} & \text { Value of Travel } \\ & (\$ / \mathrm{hr}) \end{aligned}$	Number of	Number of Business Trips	Nombe of	$\begin{gathered} \text { Total Work Zone } \\ \text { Delay Time veh- } \\ \text { hr/day } \end{gathered}$	${ }^{\text {a }}$
Personal travel. Venicle occuparcy all	270	882\%	0.01958	16.2	397.69			7.788	5.299.07
		11.8\%	${ }^{0.001958}$	29.4		53.21		1.042	${ }_{1}^{1,286.61}$
	${ }^{2 \%}$ of ADT	2.0\%	${ }^{0.01998}$	${ }^{32}$			540	0.106	42.1
$\frac{\text { Work Zone Cengh }=}{\text { Speed Reduction }}$	$\frac{0.1958 \mathrm{mi}}{10 \mathrm{MPH}}$		nec Duration	$\frac{42 \text { Days }}{2 \text { Years }}$				TOTAL $=$	(6,727.8.8

AMORTIZED BRILGE REFPL CEMENT VALUE

altervative 2: BRIDGE PRESERVATIO

Bridge		${ }_{\text {a }}^{\substack{\text { Alem } 29 \\ \text { (pod) }}}$				$\begin{gathered} \text { Hep 106 } \\ \text { Con } \\ \text { Recansr } \end{gathered}$	${ }_{\text {age }}$	Item 49 Bridge Length (ft)	city	Road Name and C Cossing
P.0117	2	9620	5	481	1990	0	32	443	${ }_{0.2733}$	Cherrywood Lane over . $1951 / 495$
P.0169	6	${ }^{22202}$	5	$\frac{1110.1}{1145}$	${ }^{1999}$	$\stackrel{0}{1070}$	${ }^{25}$	${ }^{175}$	${ }_{0}^{0.2225}$	Contter raid over c cx railroad
${ }^{\text {P.0.1185 }}$,	${ }^{14850}$	10	${ }_{1}^{1485}$	${ }^{1900}$	${ }^{1970}$	${ }_{52}^{52}$	${ }_{6}^{62}$	0.2011	METZRROTT ROAD OVVR PR PAINT TRANCH
${ }_{\text {P. }}^{\text {P. } 190}$	2	¢ ${ }^{5820}$	100		- 1985	$\stackrel{0}{0}$	${ }_{3}^{37}$	$\frac{87}{198}$	$\frac{0.2059}{02029}$	
	6	${ }^{10861}$	$\stackrel{10}{10}$	${ }_{\text {1086.1 }}^{1086}$	-1990	0	${ }^{32}$	${ }_{1}^{198}$	(0,2269	Chirrr Lank (east over csx Raliroad
P.0.198041	${ }^{6}$	${ }^{10860}$	${ }^{10}$	1086 2045	${ }_{1}^{1979}$	0	${ }_{4}^{43}$	${ }^{198}$	${ }_{0}^{0.2269}$	CHERRY LANE (WEST OVER CSX RAIIROAD
P.0294	3	${ }^{22445}$	10	${ }^{2244.5}$	${ }^{1980}$	0	${ }_{42}^{42}$	${ }^{70}$	${ }_{0}^{0.2027}$	RITCHIL ROAD O OER SOUTHWEST R RANCH
${ }^{\text {P.0.025 }}$	3	${ }^{39421}$	5	${ }_{\text {1971.05 }}^{195}$	${ }_{1}^{1969}$	0	${ }_{5}^{58}$	${ }^{96}$	${ }_{0}^{0.2076}$	WALLER MILL ROAA OVVR S Southwest branch
${ }^{\text {P.0.220 }}$	1	${ }^{5000}$	10	-500	${ }^{1957}$	0	${ }^{65}$	${ }^{22}$	${ }^{0.1936}$	RIVERDALE ROAD OVER TRIBUTIARY To Northenst branch
${ }^{\text {P.0273 }}$	2	${ }^{15218}$	10	${ }_{1521.8}^{15}$	${ }^{1979}$	0	${ }^{43}$	${ }^{212}$	${ }_{0}^{0.2295}$	Carter avenue over amtrak raliroad
P.0283	2	${ }_{18846}$	10	1884.6	${ }^{1989}$	0	${ }^{33}$	${ }^{139}$	0.2157	LOTTSFRRD ROAD OVER WESTERN BRANCH
P. ${ }_{\text {P. } 0294}^{\text {P. } 0396}$	$\frac{1}{2}$	8880 6842 68	$\frac{25}{5}$	2170 342.1	1955 1997 1979	$\stackrel{1994}{0}$	${ }^{28}$	$\frac{220}{118}$	0.2311 0.2117	
P.0984	4	4886	10	488.6	1986	0	${ }^{36}$	80	0.2045	MCKENDREE ROAD OVER TIMOTHY BRANCH
P.0490	4	${ }^{3793}$	10	${ }^{379.3}$	${ }^{1989}$	-	${ }^{33}$	${ }^{154}$	${ }_{0}^{0.2186}$	GALLAAAN NOAD OVER TNKERS CrEEK
${ }_{\text {P.0579 }}^{\text {P. } 0596}$	$\frac{1}{3}$	${ }_{3}^{270}$	$\stackrel{2}{10}$	${ }_{\text {¢ }}^{35.4}$	${ }_{\text {L }}^{1974}{ }_{195}$	0	${ }^{48}$	$\stackrel{34}{66}$	$\stackrel{0.1958}{0.2019}$	Derrick PLACE OVER BUTLER BRANCH

Parent Asset	Asset Name	(027) Year Built	(106) Year Reconstructed	(058) Deck	$\begin{aligned} & \text { Deck - Topside } \\ & \text { (301) } \end{aligned}$	Deck - Underside (301)	Expansion Joints (305)	(059) Superstructure	Bearing Devices (311)	Girders or Beams (312)	(060) Substructure	(062) Culverts
Prince George's County > NBIS Structures	P-0102001	1970	2008	6	6	6	5	5	4	5	6	N
Prince George's County > NBIS Structures	P-0104001	1966	0000	4	-	-	-	4	7	4	5	N
Prince George's County > NBIS Structures	P-0105001	1963	0000	5	-	5	-	5	-	-	6	N
Prince George's County > NBIS Structures	P-0106001	1964	1994	5	-	5	4	4	4	4	5	N
Prince George's County > NBIS Structures	P-0112001	1969	1996	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0113001	1969	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0114001	1985	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0117001	1990	0000	6	6	6	4	6	5	6	5	N
Prince George's County > NBIS Structures	P-0124002	1993	0000	6	-	7	-	5	6	5	6	N
Prince George's County > NBIS Structures	P-0125001	1960	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0160001	1927	1972	4	-	4	-	4	--	--	5	N
Prince George's County > NBIS Structures	P-0161001	1972	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0169001	1997	0000	7	7	7	4	7	6	7	7	N
Prince George's County > NBIS Structures	P-0171001	1964	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0178001	1964	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0185001	1900	1970	5	6	5	-	5	6	5	5	N
Prince George's County > NBIS Structures	P-0190001	1985	0000	7	7	7	5	6	6	6	7	N
Prince George's County > NBIS Structures	P-0193001	1948	1986	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0196001	1967	1976	5	-	5	-	5	-	-	7	N
Prince George's County > NBIS Structures	P-0198031	1990	0000	6	7	6	5	6	4	6	7	N
Prince George's County > NBIS Structures	P-0198041	1979	0000	7	7	7	5	6	6	6	7	N
Prince George's County > NBIS Structures	P-0204001	1980	0000	7	7	7	5	5	6	5	7	N
Prince George's County > NBIS Structures	P-0205001	1969	0000	5	5	5	4	6	5	6	6	N
Prince George's County > NBIS Structures	P-0220001	1957	0000	N	-	5	-	N	-	3	N	5
Prince George's County > NBIS Structures	P-0273001	1979	0000	6	6	6	6	6	5	6	6	N
Prince George's County > NBIS Structures	P-0274001	1979	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0275001	1977	2003	6	6	6	4	7	7	7	6	N
Prince George's County > NBIS Structures	P-0280001	1956	0000	5	-	5	-	5	-	5	6	N
Prince George's County > NBIS Structures	P-0282001	1967	2003	7	7	7	6	6	5	6	6	N
Prince George's County > NBIS Structures	P-0283001	1989	0000	7	7	7	4	6	4	6	7	N
Prince George's County > NBIS Structures	P-0285001	1968	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0289001	1966	0000	4	-	4	-	4	7	4	6	N
Prince George's County > NBIS Structures	P-0294001	1955	1994	7	7	7	5	7	6	7	5	N
Prince George's County > NBIS Structures	P-0295001	1967	0000	4	-	-	-	4	6	4	5	N
Prince George's County > NBIS Structures	P-0297001	1956	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0299001	1963	0000	5	-	5	-	5	7	5	5	N
Prince George's County > NBIS Structures	P-0302001	2002	0000	7	7	7	4	8	6	8	7	N
Prince George's County > NBIS Structures	P-0310001	1963	0000	5	-	5	4	5	6	5	5	N
Prince George's County > NBIS Structures	P-0324001	1953	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0394001	1948	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0396001	1979	0000	6	6	6	4	6	5	6	7	N
Prince George's County > NBIS Structures	P-0401001	1952	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0406002	1953	0000	1				1			1	N
Prince George's County > NBIS Structures	P-0480001	1989	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0483001	1977	0000	5	-	-	-	5	7	5	6	N
Prince George's County > NBIS Structures	P-0484001	1986	0000	6	7	6	5	6	6	6	6	N

Parent Asset	Asset Name	(027) Year Built	(106) Year Reconstructed	(058) Deck	Deck - Topside (301)	$\left\lvert\, \begin{gathered} \text { Deck - } \\ \text { Underside (301) } \end{gathered}\right.$	Expansion Joints (305)	(059) Superstructure	Bearing Devices (311)	Girders or Beams (312)	(060) Substructure	(062) Culverts
Prince George's County > NBIS Structures	P-0487001	1932	1989	5	-	5	-	4	-	4	5	N
Prince George's County > NBIS Structures	P-0488001	1974	0000	5	5	6	4	6	5	6	7	N
Prince George's County > NBIS Structures	P-0490001	1989	0000	6	6	6	5	6	6	6	6	N
Prince George's County > NBIS Structures	P-0494001	1956	0000	5	-	5	-	5	-	5	4	N
Prince George's County > NBIS Structures	P-0495001	1955	1989	5	5	6	-	4	4	4	5	N
Prince George's County > NBIS Structures	P-0502001	1964	0000	5	-	5	-	5	-	-	6	N
Prince George's County > NBIS Structures	P-0504001	1960	0000	N	-	-	-	N			N	4
Prince George's County > NBIS Structures	P-0507001	1964	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-0579001	1974	0000	5	5	6	4	6	6	6	7	N
Prince George's County > NBIS Structures	P-0581001	1974	0000	4	-	4	-	4	7	4	6	N
Prince George's County > NBIS Structures	P-0596001	1985	0000	6	6	6	5	6	6	6	7	N
Prince George's County > NBIS Structures	P-0599001	1920	1995	4	4	4	5	3	5	-	6	N
Prince George's County > NBIS Structures	P-B-02001	1962	0000	N	-	-	-	N			N	4
Prince George's County > NBIS Structures	P-MO03001	1952	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-MO04001	1950	1985	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-MO05001	2020	0000	9	-	5	-	9	-	-	9	N
Prince George's County > NBIS Structures	P-N-01001	1975	0000	5	-	5	-	5	6	5	6	N
Prince George's County > NBIS Structures	P-N-02001	1970	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-UN98001	1977	0000	N	-	-	-	N			N	5
Prince George's County > NBIS Structures	P-UN99002	1924	1962	N				N			N	1

Total Assests in the Query:	66	
Number of bridges curently closed to traffic: Total number of bridges with an element in condition 5 or less:	3	(bold)

LEGEND

Number of bridges curently closed to traffic condition 5 or less:

SAM Query Criteria:

Year Built and Year Reconstructed: Any

Bridge length equal or longer than 20 feet (NBIS)
Item 58 - Deck rated 5 or less
Sub-item 58.9 - Roadway Joints rated 5 or less Item 301 - Deck Underside / Top Side rated 5 or less

Item 59 - Superstructure rated 5 or les
Sub-item 59.1 - Bearing Devices rated 5 or less
Sub-item 59.2 - Girders or Beams rated 5 or less
Item 60 - Substructure rated 5 or less
Item 62 - Culvert rated 5 or less

[^0]: ${ }^{1}$ FHWA Bridge Preservation Guide. 2018.
 ${ }^{2}$ Refer to MDOT SHA Structure Asset Management (SAM) query for bridge elements rated 5 or less. August 2022.
 ${ }^{3}$ FHWA Definition of Service Life: The service life is the period for which a component, element, or bridge provides the desired function and remains in service with appropriate preservation activities. Service life of bridge components or elements is the period during which the item actually performs. The service life of a bridge and components in good to fair condition can be extended with cyclical and/or condition-based PM activities. Bride Preservation Guide. 2018.
 ${ }^{4}$ USDOT Benefit-Cost Analysis Guidance for Discretionary Grant Programs. March 2022.

[^1]: ${ }^{5}$ Work Zone Road User Costs. FHWA Office of Operations.

[^2]: ${ }^{6}$ USDOT benefit-Cost Analysis Guidance for Discretionary Grant Programs.

[^3]: ${ }^{7}$ ADT, ADTT, detour length, and load posting data was obtained from the bridge SI\&A.

[^4]: ${ }^{8}$ USDOT benefit-Cost Analysis Guidance for Discretionary Grant Programs.

[^5]: ${ }^{9}$ Work Zone Road User Costs. FHWA Office of Operations.
 ${ }^{10}$ USDOT benefit-Cost Analysis Guidance for Discretionary Grant Programs.

[^6]: ${ }^{11}$ I-35W Bridge collapse 15 years later: How much safer are Minnesota's bridges? By Caroline Cummings. Article published on CBS News, Minnesota on July 31, 2022. https://www.cbsnews.com/minnesota/news/i-35w-bridge-collapse-15-years-later-how-much-safer-are-minnesotas-bridges/
 ${ }^{12}$ MDOT SHA Structure Asset Management (SAM) query for bridge elements rated 5 or less, Refer to Exhibit 21.
 ${ }^{13}$ FHWA, USDOT 2018 Bridge Preservation Guide.

[^7]: ${ }^{14}$ Based on the USDOT benefit-Cost Analysis Guidance for Discretionary Grant Programs

[^8]: ${ }^{15}$ USDOT Framework for Improving Resilience of Bridge Design. Publication No. FHWA-IF-11-016. January 2011.

